Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Geography / 地理環境資源學系
  4. Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications
 
  • Details

Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications

Journal
Journal of Ecology
Journal Volume
99
Journal Issue
3
Pages
714-723
Date Issued
2011
Author(s)
CHO-YING HUANG  
DOI
10.1111/j.1365-2745.2011.01804.x
URI
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000289626000007&KeyUID=WOS:000289626000007
http://scholars.lib.ntu.edu.tw/handle/123456789/363612
Abstract
Climate extremes such as drought can trigger large-scale tree die-off, reducing overstorey canopy and thereby increasing near-ground solar radiation. This directly affects biotic and abiotic processes, including plant physiology, reproduction, phenology, soil evaporation and nutrient cycling, which themselves affect understory facilitation, productivity and diversity, and land surface-atmosphere fluxes of energy, carbon and water. Although important, assessing extreme-event solar radiation responses regionally following die-off is complex compared with characterizing patch-scale inputs. Estimating regional-scale changes requires integration of broad-scale downward-looking shading patterns due to canopy and topography with fine-scale upward-looking canopy details (e.g. live vs. dead trees, height, diameter, spatial pattern and foliar diffusivity). We quantified increases in near-ground solar radiation following overstorey loss of piñon pine cover in response to a recent extreme drought event (2002-2003). We evaluated 211km2 in south-western USA seasonally and annually using high-spatial resolution satellite imagery, hemispherical ground photography, GIS (Geographic Information System)-based solar radiation modelling tools, in situ meteorological data and tree measurements. Overstorey loss due to die-off produced increases in near-ground solar radiation regionally each season - up to 28Wm-2, an increase of 9.1%, in summer - while simultaneously decreasing spatial variation. Annually the increase was c. 17Wm-2. Larger increases occurred where initial canopy cover was greater or at higher elevations, by as much as c. 80Wm-2 (a 40% increase). Synthesis. Our results are notable in that they quantify increases regionally in near-ground solar radiation in response to a climate extreme triggering widespread tree die-off. The substantial increases quantified are expected to have primary direct effects on processes such as plant physiology, reproduction, phenology, soil evaporation and nutrient cycling, and secondary effects on understory facilitation, productivity and diversity, and land surface-atmosphere fluxes of energy, carbon and water. Consequently, extreme event-induced changes in near-ground solar radiation need to be considered by both ecologists and physical scientists in assessing global change impacts. More generally, our results highlight an important but sometimes overlooked aspect of plant ecology - that plants not only respond to their physical environment and other plants, but also directly modify their physical environment from individual plant to regional scales. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.
Subjects
Climate change; Drought; Extreme climatic event; Geographical Information System; Hemispherical photograph; Mesoscale; Piñon die-off; Plant-climate interactions; QuickBird; Remote sensing
SDGs

[SDGs]SDG13

[SDGs]SDG15

Other Subjects
carbon flux; climate change; drought stress; energy flux; GIS; net ecosystem production; phenology; physiology; QuickBird; remote sensing; satellite imagery; solar radiation; understory; vegetation dynamics; water exchange; Pinus edulis; Tillandsia lineatispica
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science