https://scholars.lib.ntu.edu.tw/handle/123456789/370651
Title: | Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation | Authors: | erson, R.G. Lo, M.-H. Famiglietti, J.S. MIN-HUI LO |
Issue Date: | 2012 | Journal Volume: | 39 | Journal Issue: | 16 | Source: | Geophysical Research Letters | Abstract: | Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.032.4 mm/year while measured surface water consumption was 308.16.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales. © 2012. American Geophysical Union. All Rights Reserved. |
URI: | http://www.scopus.com/inward/record.url?eid=2-s2.0-84865478027&partnerID=MN8TOARS http://scholars.lib.ntu.edu.tw/handle/123456789/370651 |
DOI: | 10.1029/2012GL052400 | SDG/Keyword: | Agriculture; Evapotranspiration; Food supply; Groundwater; Surface waters; Anthropogenic impacts; California; Export data; Food security; Groundwater depletion; Hydrologic data; Irrigated agriculture; Public data; Satellite observations; Satellite precipitation; Spatial resolution; Time-scales; Water consumption; Water rights; Water year; Water supply; anthropogenic effect; consumption behavior; evapotranspiration; food security; gravimetry; groundwater; precipitation (climatology); precision; remote sensing; satellite imagery; streamflow; surface water; water use; California; Central Valley [California]; United States [SDGs]SDG2 |
Appears in Collections: | 大氣科學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.