Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Unsupervised domain adaptation for spoken document summarization with structured support vector machine
 
  • Details

Unsupervised domain adaptation for spoken document summarization with structured support vector machine

Journal
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
Pages
8347-8351
Date Issued
2013
Author(s)
Chou, Y.-Y.
Wang, Y.-B.
HUNG-YI LEE  
LIN-SHAN LEE  
DOI
10.1109/ICASSP.2013.6639293
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84890445010&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/377557
Abstract
Supervised approaches can learn a spoken document summarizer generating high-quality summaries using a set of training examples matched to the domain of target documents. However, preparing a sufficient number of in-domain training examples is expensive. In this paper we propose an approach for unsupervised domain adaptation for spoken document summarization, so no in-domain training examples are needed. A summarizer is first learned from a set of out-of-domain training examples by a supervised summarization approach based on structured support vector machine, and this summarizer is used to generate a set of initial summaries for the target spoken documents. The target documents and their initial machine-generated summaries then serve as extra training examples for learning a new summarizer, which further updates the summaries of the target spoken documents. This process is continued iteratively to incrementally improve the summarizer for the target spoken documents. Moreover, extra approaches transforming the feature representations based on the data distribution in the target domain and augmenting the representations with an extra set of domain-specific features are also proposed. Encouraging results were obtained in summarizing Mandarin-English code-switching course lectures using training examples from Mandarin broadcast news. © 2013 IEEE.
Subjects
Speech Summarization; Structured Support Vector Machine; Unsupervised Domain Adaptation
Other Subjects
Data distribution; Domain adaptation; Domain specific; Feature representation; Speech summarization; Spoken document; Structured supports; Training example; Metadata; Signal processing; Speech recognition; Support vector machines; Natural language processing systems
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science