Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Plasmonic photocatalysis
 
  • Details

Plasmonic photocatalysis

Journal
Reports on Progress in Physics
Journal Volume
76
Journal Issue
4
Date Issued
2013
Author(s)
Zhang, Xuming
Chen, Yu Lim
RU-SHI LIU  
Tsai, Din Ping
DOI
10.1088/0034-4885/76/4/046401
URI
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000317032800005&KeyUID=WOS:000317032800005
http://scholars.lib.ntu.edu.tw/handle/123456789/377767
Abstract
Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features - a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects - the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications. © 2013 IOP Publishing Ltd.
SDGs

[SDGs]SDG7

Other Subjects
metal nanoparticle; catalysis; chemistry; light; photochemistry; physical phenomena; review; Catalysis; Light; Metal Nanoparticles; Photochemical Processes; Physical Processes; Catalysis; Light; Metal Nanoparticles; Photochemical Processes; Physical Processes
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science