Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Combination of vessel-targeting agents and fractionated radiation therapy: The role of the SDF-1/CXCR4 pathway
 
  • Details

Combination of vessel-targeting agents and fractionated radiation therapy: The role of the SDF-1/CXCR4 pathway

Journal
International Journal of Radiation Oncology Biology Physics
Journal Volume
86
Journal Issue
4
Pages
777-784
Date Issued
2013
Author(s)
YING-CHIEH YANG  
DOI
10.1016/j.ijrobp.2013.02.036
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879240401&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/377839
Abstract
Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor. ? 2013 Elsevier Inc.
SDGs

[SDGs]SDG3

Other Subjects
Combination treatments; Complex interaction; Epidermal growth factor receptors; Fractionated radiation; Methods and materials; Tumor microenvironment; Vascular perfusion; Vascular structures; Bone; Cells; Cytology; Mammals; Radiotherapy; Tumors; chemokine receptor CXCR4; gefitinib; green fluorescent protein; hoe 33342; plerixafor; stromal cell derived factor 1; angiogenesis; animal cell; animal experiment; animal model; animal tissue; article; blood vessel wall; bone marrow cell; cancer inhibition; cell adhesion; clinical effectiveness; controlled study; density; hypoxia; male; microvascular density; morphology; mouse; nonhuman; perfusion; pericyte; priority journal; prostate tumor; radiation dose; radiation dose fractionation; survival; treatment response; tumor microenvironment; tumor necrosis; tumor vascularization; Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Benzimidazoles; Bone Marrow Cells; Chemokine CXCL12; Combined Modality Therapy; Dose Fractionation; Green Fluorescent Proteins; Heterocyclic Compounds; Luminescent Agents; Male; Mice; Mice, Inbred C57BL; Neovascularization, Pathologic; Pericytes; Prostatic Neoplasms; Quinazolines; Receptor, Epidermal Growth Factor; Receptors, CXCR4; Tumor Microenvironment
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science