Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Geosciences / 地質科學系
  4. Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan
 
  • Details

Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan

Journal
Journal of Asian Earth Sciences
Journal Volume
92
Pages
245-253
Date Issued
2014
Author(s)
Chen, L.
Chi, W.-C.
Wu, S.-K.
CHAR-SHINE LIU  
Shyu, C.-T.
Wang, Y.
CHIA-YU LU  
DOI
10.1016/j.jseaes.2014.01.004
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84907437266&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/385978
Abstract
Fluid migration patterns are important for understanding gas hydrate and hydrocarbon systems. However, conducting experiments on or below the seafloor is difficult because crustal fluid flow rates are usually very slow, so long term observations are needed. Temperature can be used as a good tracer for studying fluid flows. Temperatures derived from bottom-simulating reflectors (BSRs) might help to understand fluid migration patterns in shallow marine sediments. In this study, we studied 2D fluid flow patterns in two potential gas hydrate provinces offshore southwestern Taiwan: the Yung-An Ridge in the active margin and Formosa Ridge in the passive margin. We used 2D bathymetry, average seafloor temperatures and regional geothermal gradients measured by thermal probes, as constraints to construct 2D theoretical conductive temperature fields using finite element methods. We then compared the BSR-based temperature with the theoretical conductive temperature field. The results show a temperature discrepancy attributed to advective heat transfer due to fluid migration. For the Yung-An Ridge, the BSR-based temperatures are about 2. °C higher than the model: Especially in (1) near a fault zone, (2) under the eastern flank where there are strong seismic reflectors in a pseudo-3D seismic dataset, and (3) near a fissure zone. For the Formosa Ridge, our results showed a distinct decrease in temperatures around the southern peak of the ridge, where an active gas plume was found. BSR-based temperatures predict on average 2. °C lower than the model. At these two sites, the shallow temperature fields are strongly affected by 2D bathymetry. However, new insights regarding fluid flow patterns can be obtained using this model approach. © 2014 Elsevier Ltd.
Subjects
Bottom-simulating reflectors; Finite-element; Fluid migration; Geothermal gradient
SDGs

[SDGs]SDG14

Other Subjects
advection; bathymetry; finite element method; flow pattern; fluid flow; gas hydrate; geothermal gradient; heat transfer; numerical model; passive margin; seafloor; two-dimensional flow; Taiwan
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science