Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Temporal and spatial denoising of depth maps
 
  • Details

Temporal and spatial denoising of depth maps

Journal
Sensors (Switzerland)
Journal Volume
15
Journal Issue
8
Pages
18506-18525
Date Issued
2015
Author(s)
Lin, B.-S.
Su, M.-J.
Cheng, P.-H.
Tseng, P.-J.
SAO-JIE CHEN  
DOI
10.3390/s150818506
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938398927&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/393054
Abstract
This work presents a procedure for refining depth maps acquired using RGB-D (depth) cameras. With numerous new structured-light RGB-D cameras, acquiring high-resolution depth maps has become easy. However, there are problems such as undesired occlusion, inaccurate depth values, and temporal variation of pixel values when using these cameras. In this paper, a proposed method based on an exemplar-based inpainting method is proposed to remove artefacts in depth maps obtained using RGB-D cameras. Exemplar-based inpainting has been used to repair an object-removed image. The concept underlying this inpainting method is similar to that underlying the procedure for padding the occlusions in the depth data obtained using RGB-D cameras. Therefore, our proposed method enhances and modifies the inpainting method for application in and the refinement of RGB-D depth data image quality. For evaluating the experimental results of the proposed method, our proposed method was tested on the Tsukuba Stereo Dataset, which contains a 3D video with the ground truths of depth maps, occlusion maps, RGB images, the peak signal-to-noise ratio, and the computational time as the evaluation metrics. Moreover, a set of self-recorded RGB-D depth maps and their refined versions are presented to show the effectiveness of the proposed method. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
Subjects
Depth image; Hole padding; RGB-D sensor; Spatial-temporal denoising
Other Subjects
Cameras; Image quality; Signal to noise ratio; Computational time; De-noising; Depth image; High-resolution depth; Hole padding; Peak signal to noise ratio; Rgb-d sensors; Temporal and spatial; Stereo image processing; algorithm; automated pattern recognition; data base; procedures; signal noise ratio; three dimensional imaging; time factor; Algorithms; Databases as Topic; Imaging, Three-Dimensional; Pattern Recognition, Automated; Signal-To-Noise Ratio; Time Factors
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science