Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Polymer Science and Engineering / 高分子科學與工程學研究所
  4. Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives
 
  • Details

Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives

Journal
Solar Energy Materials and Solar Cells
Journal Volume
157
Pages
666-675
Date Issued
2016
Author(s)
Chao, Y.-C.
Chuang, C.-H.
Hsu, H.-L.
Wang, H.-J.
Hsu, Y.-C.
Chen, C.-P.
Jeng, R.-J.
RU-JONG JENG  
DOI
10.1016/j.solmat.2016.07.041
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84984846425&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/397284
Abstract
In this work, we prepared four star-shaped conjugated small molecules, the triphenylamine dithiophene (TBT) derivatives, namely TBT-H, TBT-Br, TBT-OH, and TBT-N3 presenting hydride, bromide, hydroxyl, and azide terminal functional groups, respectively. These TBT derivatives were used as additives in the active layers of organic photovoltaics to investigate the effect of intermolecular interactions (TBT-H, TBT-OH) or crosslinking (TBT-N3, TBT-Br) on the long-term thermal stability of the devices. From analyses of blend film morphologies, and optoelectronic and device performance, we observed significant enhancements in thermal stability during accelerated heating tests at 150 °C for the devices incorporated with the additives TBT-N3 and TBT-Br. These two additives functioned as crosslinkers, and constructed local borders that effectively impeded heat-promoted fullerene aggregation, thereby leading to highly stable morphologies. When compared with corresponding normal devices, the TBT-N3–derived devices based on poly(3-hexylthiophene) exhibited greater stability, with the power conversion efficiency (PCE) remaining as high as 2.5% after 144h at 150 °C. Because of this enhancement, a device based on an amorphous low-bandgap polymer, namely poly(thieno[3,4-b]thiophene-alt-benzodithiophene), with the addition of TBT-N3 was fabricated. We observed a significant improvement in device stability, retaining approximately 60% (from 5.0 to 3.3%) of its initial PCE under accelerated heating (150 °C). In contrast, the PCE of the corresponding normal device decayed to 0.01% of its initial value. © 2016 Elsevier B.V.
Subjects
Crosslinker; Intermolecular interaction; Organic photovoltaic; Thermal stability
SDGs

[SDGs]SDG7

Other Subjects
Bromine compounds; Photovoltaic effects; Stability; Conjugated small molecules; Crosslinker; Intermolecular interactions; Organic photovoltaics; Poly (3-hexylthiophene); Power conversion efficiencies; Thieno[3 ,4-b]thiophene; Triphenylamine derivatives; Thermodynamic stability
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science