Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Life Science / 生命科學院
  3. Life Science / 生命科學系
  4. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina
 
  • Details

M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina

Journal
Journal of Neuroscience
Journal Volume
36
Journal Issue
27
Pages
7184 7197
Date Issued
2016
Author(s)
C. L. Prigge
P. T. Yeh
N. F. Liou
C. C. Lee
S. F. You
L. L. Liu
D. S. McNeill
K. S. Chew
S. Hattar
S. K. Chen  
D. Q. Zhang
DOI
10.1523/jneurosci.3500 15.2016
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/414776
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977477557&doi=10.1523%2fJNEUROSCI.3500-15.2016&partnerID=40&md5=e7c8c493f7a6052ec6b54484445079d2
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population ofM1ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na+ channels; (2) this transmission is partly dependent on N-type Ca2+ channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. © 2016 the authors.
Subjects
Amacrine cell; Dopamine; Ganglion cell; Melanopsin; Retina; Vision
Other Subjects
melanopsin; tamoxifen; tetrodotoxin; beta galactosidase; Cnga3 protein, mouse; cyclic nucleotide gated channel; Gnat1 protein, mouse; guanine nucleotide binding protein alpha subunit; melanopsin; nerve protein; Pde6b protein, mouse; phosphodiesterase VI; protein c fos; scotopsin; sodium channel blocking agent; tetrodotoxin; transducin; tyrosine 3 monooxygenase; adult; amplitude modulation; animal experiment; animal model; animal tissue; Article; bleaching; confocal microscopy; controlled study; electroretinogram; female; fluorescence; immunofluorescence; immunohistochemistry; light adaptation; male; morphological adaptation; mouse; nonhuman; patch clamp technique; photostimulation; polymerase chain reaction; priority journal; retina ganglion cell; retrograde degeneration; signal transduction; synaptic membrane; vision; animal; C57BL mouse; classification; cytology; drug effects; excitatory postsynaptic potential; genetics; light; membrane potential; metabolism; newborn; physiology; retina; retina ganglion cell; transgenic mouse; vision; visual system; Animals; Animals, Newborn; beta-Galactosidase; Cyclic Nucleotide Phosphodiesterases, Type 6; Cyclic Nucleotide-Gated Cation Channels; Excitatory Postsynaptic Potentials; Female; GTP-Binding Protein alpha Subunits; Light; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Tissue Proteins; Proto-Oncogene Proteins c-fos; Retina; Retinal Ganglion Cells; Rod Opsins; Sodium Channel Blockers; Tetrodotoxin; Transducin; Tyrosine 3-Monooxygenase; Vision, Ocular; Visual Pathways
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science