Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework
 
  • Details

Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework

Journal
ACS Nano
Journal Volume
4
Journal Issue
3
Pages
8366-8375
Date Issued
2016
Author(s)
Haider, G. et al.
YANG-FANG CHEN  
DOI
10.1021/acsnano.6b03030
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/443020
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989193354&doi=10.1021%2facsnano.6b03030&partnerID=40&md5=7a4ec7266d6c57cf64ce13679835adf5
Abstract
Light-emitting diodes (LEDs) have drawn tremendous potential as a replacement of traditional lighting due to its low-power consumption and longer lifetime. Nowadays, the practical white LEDs (WLED) are contingent on the photon down-conversion of phosphors containing rare-earth elements, which limits its utility, energy, and cost efficiency. In order to resolve the energy crisis and to address the environmental concerns, designing a direct WLED is highly desirable and remains a challenging issue. To circumvent the existing difficulties, in this report, we have designed and demonstrated a direct WLED consisting of a strontium-based metal-organic framework (MOF), {[Sr(ntca)(H2O)2]·H2O}n (1), graphene, and inorganic semiconductors, which can generate a bright white light emission. In addition to the suitable design of a MOF structure, the demonstration of electrically driven white light emission based on a MOF is made possible by the combination of several factors including the unique properties of graphene and the appropriate band alignment between the MOF and semiconductor layer. Because electroluminescence using a MOF as an active material is very rare and intriguing and a direct WLED is also not commonly seen, our work here therefore represents a major discovery which should be very useful and timely for the development of solid-state lighting. © 2016 American Chemical Society.
Subjects
electroluminescence; graphene; light-emitting diode; metal-organic frameworks; natural white light; photoluminescence
SDGs

[SDGs]SDG7

Other Subjects
Crystalline materials; Electroluminescence; Energy policy; Graphene; Java programming language; Light; Light emission; Lighting; Organic polymers; Organometallics; Photoluminescence; Semiconductor diodes; Environmental concerns; Inorganic semiconductors; Low-power consumption; Metal organic framework; Semiconductor layers; Solid state lighting; White light; White light emission; Light emitting diodes
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science