Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agricultural Chemistry / 農業化學系
  4. Copper and zinc in vineyard and orchard soils at millimeter vertical resolution
 
  • Details

Copper and zinc in vineyard and orchard soils at millimeter vertical resolution

Journal
Science of the Total Environment
Journal Volume
689
Journal Volume
689
Pages
958-962
Start Page
958
End Page
962
ISSN
00489697
Date Issued
2019-11-01
Author(s)
Sonoda, Kent
Hashimoto Y.
SHAN-LI WANG  
Ban, Takuya
DOI
10.1016/j.scitotenv.2019.06.486
URI
https://www.scopus.com/pages/publications/85068269718?origin=resultslist
URL
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85068269718&doi=10.1016%2fj.scitotenv.2019.06.486&partnerID=40&md5=47bdfafcc0913c072e2cc59b0ab9d78f
Abstract
Intensive uses of agrochemicals and soil amendments often cause the elevation of Cu and Zn concentrations in vineyard (VY) and orchard soils. The concentration and speciation of Cu and Zn in the soils at millimeter resolution is critical to understanding the risk of transport of these metals via surface runoff and infiltration. The objective of this study was to investigate the concentration and chemical species of Zn and Cu in VY and persimmon (PS) soils at millimeter vertical resolution. The soils were collected with 5 mm increments down to 5 cm depth and with 5 cm increments down to 25 cm depth. The total concentration and chemical species of Zn and Cu were determined by total digestion and X-ray absorption fine structure (XAFS) spectroscopy, respectively. The Zn concentration of VY soil reached a maximum of 290 mg kg−1 at the uppermost layer of the profile (0.5–1.0 cm). The Cu concentration of VY soil reached a maximum of 201 mg kg−1 (10–15 cm). These Zn and Cu concentrations were greater than background levels. Zinc K-edge XAFS spectroscopy determined that the uppermost layer of VY soil (0–0.5 cm) contained 42% Zn associated with humus and lesser extent of Zn associated with gibbsite (37%) and kaolinite (21%). Zinc associated with humus was not observed in the VY soil profiles below 0.5 cm, whereas Zn associated with gibbsite and kaolinite contributed >83% of total Zn species. Copper K-edge XAFS spectroscopy determined the presence of Cu bonded with humus (40–67%) and Cu adsorbed on kaolinite (26–45%) in the entire soil profile. Our study found the remarkable variation of Cu and Zn concentration and speciation within several centimeters from the soil surface in vineyard and orchard landscapes.
Subjects
Chemical speciation
Heavy metals
Soil contamination
Vineyard
XAFS
Publisher
Elsevier B.V.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science