Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Business Administration / 工商管理學系暨商學研究所
  4. Prediction of stone disease by discriminant analysis and artificial neural networks in genetic polymorphisms: A new method
 
  • Details

Prediction of stone disease by discriminant analysis and artificial neural networks in genetic polymorphisms: A new method

Journal
BJU International
Journal Volume
91
Journal Issue
7
Pages
661-666
Date Issued
2003
Author(s)
MING-HUANG CHIANG  
Chiang H.-C.
Chen W.-C.
Tsai F.-J.
DOI
10.1046/j.1464-410X.2003.03067.x
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/472380
URL
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-0038582776&doi=10.1046%2fj.1464-410X.2003.03067.x&partnerID=40&md5=8dd3a96a6ed7fce26fc64c58a919a933
Abstract
OBJECTIVE: To use information from genetic polymorphisms and from patients (drinking/exercise habits) to identify their association with stone disease, the main analytical and predictive tools being discriminant analysis (DA) and artificial neural networks (ANNs). PATIENTS, SUBJECTS AND METHODS: Urinary stone disease is common in Taiwan; the formation of calcium oxalate stone is reportedly associated with genetic polymorphisms but there are many of these. Genotyping requires many individuals and markers because of the complexity of gene-gene and gene-environmental factor interactions. With the development of artificial intelligence, data-mining tools like ANNs can be used to derive more from patient data in predicting disease. Thus we compared 151 patients with calcium oxalate stones and 105 healthy controls for the presence of four genetic polymorphisms; cytochrome p450c17, E-cadherin, urokinase and vascular endothelial growth factor (VEGF). Information about environmental factors, e.g. water, milk and coffee consumption, and outdoor activities, was also collected. Stepwise DA and ANNs were used as classification methods to obtain an effective discriminant model. RESULTS: With only the genetic variables, DA successfully classified 64% of the participants, but when all related factors (gene and environmental factors) were considered simultaneously, stepwise DA was successful in classifying 74%. The results for DA were best when six variables (sex, VEGF, stone number, coffee, milk, outdoor activities), found by iterative selection, were used. The ANN successfully classified 89% of participants and was better than DA when considering all factors in the model. A sensitivity analysis of the input parameters for ANN was conducted after the ANN program was trained; the most important inputs affecting stone disease were genetic (VEGF), while the second and third were water and milk consumption. CONCLUSIONS: While data-mining tools such as DA and ANN both provide accurate results for assessing genetic markers of calcium stone disease, the ANN provides a better prediction than the DA, especially when considering all (genetic and environmental) related factors simultaneously. This model provides a new way to study stone disease in combination with genetic polymorphisms and environmental factors.
Subjects
Artificial neural network; Discriminant analysis; Single nucleotide polymorphisms; Urolithiasis
SDGs

[SDGs]SDG3

Other Subjects
calcium oxalate; cytochrome P450c17; urokinase; uvomorulin; vasculotropin; accuracy; adult; aged; article; artificial neural network; calcium oxalate stone; controlled study; discriminant analysis; disease association; drinking behavior; environment; exercise; female; genetic polymorphism; genotype; heredity; human; major clinical study; male; pathogenesis; priority journal; single nucleotide polymorphism; urolithiasis; Adult; Aged; Discriminant Analysis; Endothelial Growth Factors; Female; Humans; Intercellular Signaling Peptides and Proteins; Lymphokines; Male; Middle Aged; Neural Networks (Computer); Polymorphism, Single Nucleotide; Sensitivity and Specificity; Urinary Calculi; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science