Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. A collaborative CPU–GPU approach for principal component analysis on mobile heterogeneous platforms
 
  • Details

A collaborative CPU–GPU approach for principal component analysis on mobile heterogeneous platforms

Journal
Journal of Parallel and Distributed Computing
Journal Volume
120
Pages
44-61
Date Issued
2018
Author(s)
Valery, O.
PANGFENG LIU  
Wu, J.-J.
DOI
10.1016/j.jpdc.2018.05.006
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/489212
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048465745&doi=10.1016%2fj.jpdc.2018.05.006&partnerID=40&md5=05780c1d4642fb3829e94ee089b74d92
Abstract
The advent of the modern GPU architecture has enabled computers to use General Purpose GPU capabilities (GPGPU) to tackle large scale problem at a low computational cost. This technological innovation is also available on mobile devices, addressing one of the primary problems with recent devices: the power envelope. Unfortunately, recent mobile GPUs suffer from a lack of accuracy that can prevent them from running any large scale data analysis tasks, such as principal component analysis (Shlens, 0000) (PCA). The goal of our work is to address this limitation by combining the high precision available on a CPU with the power efficiency of a mobile GPU. In this paper, we exploit the shared memory architecture of mobile devices in order to enhance the CPU–GPU collaboration and speed up PCA computation without sacrificing precision. Experimental results suggest that such an approach drastically reduces the power consumption of the mobile device while accelerating the overall workload. More generally, we claim that this approach can be extended to accelerate other vectorized computations on mobile devices while still maintaining numerical accuracy. © 2018 Elsevier Inc.
Subjects
Acceleration; Data analysis; Energy efficient; GPGPU; Heterogeneous system; Machine learning; Mobile computing; OpenCL; PCA
SDGs

[SDGs]SDG7

Other Subjects
Acceleration; Data handling; Data reduction; Distributed computer systems; Energy efficiency; Graphics processing unit; Information analysis; Learning systems; Memory architecture; Mobile computing; Mobile devices; Program processors; Energy efficient; GPGPU; Heterogeneous platforms; Heterogeneous systems; Large-scale data analysis; OpenCL; Shared memory architecture; Technological innovation; Principal component analysis
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science