Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells
 
  • Details

The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells

Journal
Biomaterials
Journal Volume
33
Journal Issue
26
Date Issued
2012-09
Author(s)
Liu, Hen-Yu
Chiou, Jeng-Fong
Wu, Alexander T H
Tsai, Ching-Yu
Leu, Jyh-Der
Ting, Lai-Lei
Wang, Ming-Fu
HSUAN-YU CHEN  
Lin, Che-Tong
Williams, David F
Deng, Win-Ping
DOI
10.1016/j.biomaterials.2012.05.024
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/553002
URL
https://api.elsevier.com/content/abstract/scopus_id/84862896868
Abstract
Adipose-derived stem cells (ADSCs) have been shown to be pluoripotent and explored for their usage in tissue engineering. Previously, we have established a cell-based approach comprised of platelet-enriched plasma and osteo-progenitor cells for treating osteoporosis in an ovariectomized-senescence-accelerated mice (OVX-SAMP8) model. In the present study, we intend to explore the feasibility of using ADSCs as a cell-based therapeutic approach for treating osteoporosis, and to examine the effects of aging on the pluoripotency of ADSCs and the efficiency of bone formation both in vitro and in vivo. Flow cytometry was used to characterize ADSCs isolated from young and aged female SAMP8 mice and showed that the highly positive expression of surface markers such as CD44 and CD105 and negative for CD34 and CD45. Therefore, to compare the aging effects on the growth kinetics and differentiation potential of young and aged ADSCs, we found that there was a significant decline in both the proliferation rate (approximately 13.3%) and osteo-differentiation potential in aged ADSC. Subsequently, young and aged ADSCs were transplanted into the bone marrow of osteoporotic mice (OVX-SAMP8) to evaluate their bone formation ability. ADSC transplants were shown effective in restoring bone mineral density in the right/left knees, femurs and spine, 4 months post-transplantation; mice which received young ADSC transplants showed significantly higher bone regeneration (an average of 24.3% of improved BMD) over those received aged ADSCs. In conclusion, these findings showed that aging impedes osteoporosis-ameliorating potential of ADSC by diminishing osteogenic signal, and that ADSC could be used as a potential cell-based therapy for osteoporosis.
Subjects
Adipose-derived stem cells (ADSCs) | Bone regeneration | Osteoporosis | Ovariectomized senescence accelerated mice (OVX-SAMP8) | Young and aged
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science