https://scholars.lib.ntu.edu.tw/handle/123456789/572956
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang C.-Y | en_US |
dc.contributor.author | SHAU-PING LIN et al. | en_US |
dc.contributor.author | I-HSUAN LIU et al. | en_US |
dc.creator | Yang C.-Y;Lu R.J.-H;Lee M.-K;Hsiao F.S.-H;Yen Y.-P;Cheng C.-C;Hsu P.-S;Tsai Y.-T;Chen S.-K;Liu I.-H;Chen P.-Y;Lin S.-P. | - |
dc.date.accessioned | 2021-07-26T09:45:12Z | - |
dc.date.available | 2021-07-26T09:45:12Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2296634X | - |
dc.identifier.uri | https://scholars.lib.ntu.edu.tw/handle/123456789/572956 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102451955&doi=10.3389%2ffcell.2021.615098&partnerID=40&md5=dd96a112e9a90ed878c626f3d220fc85 | - |
dc.description.abstract | Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward. ? Copyright ? 2021 Yang, Lu, Lee, Hsiao, Yen, Cheng, Hsu, Tsai, Chen, Liu, Chen and Lin. | - |
dc.publisher | Frontiers Media S.A. | - |
dc.relation.ispartof | Frontiers in Cell and Developmental Biology | - |
dc.subject | cell surface marker; dnmt3l protein; protein; transcriptome; unclassified drug; animal cell; animal experiment; Article; bone density; bone development; bone structure; cell differentiation; cell lineage; chromatin immunoprecipitation sequencing; controlled study; epigenetics; exon; extracellular matrix; female; gene knockdown; genotype; homeostasis; in vitro study; in vivo study; knockout mouse; male; mesenchymal stem cell; mesenchymal stroma cell; mouse; multipotent stem cell; nonhuman; nucleosome; osteoblast; oxidative stress; phenotype; RNA sequencing; stem cell self-renewal; transcriptomics; transposon; upregulation; Western blotting | - |
dc.title | Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation | en_US |
dc.type | journal article | - |
dc.identifier.doi | 10.3389/fcell.2021.615098 | - |
dc.identifier.scopus | 2-s2.0-85102451955 | - |
dc.relation.journalvolume | 9 | - |
dc.relation.journalissue | Article number 615098 | - |
item.openairetype | journal article | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Biotechnology | - |
crisitem.author.dept | Genome and Systems Biology Degree Program | - |
crisitem.author.dept | Animal Science and Technology | - |
crisitem.author.orcid | 0000-0003-3423-991X | - |
crisitem.author.orcid | 0000-0002-4524-3263 | - |
crisitem.author.parentorg | College of Bioresources and Agriculture | - |
crisitem.author.parentorg | College of Life Science | - |
crisitem.author.parentorg | College of Bioresources and Agriculture | - |
Appears in Collections: | 生物科技研究所 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.