Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review
 
  • Details

Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review

Journal
Engineering Geology
Journal Volume
287
Date Issued
2021
Author(s)
Wang T.-T  
Kwok O.-L.A  
FU-SHU JENG  
DOI
10.1016/j.enggeo.2021.106090
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103330179&doi=10.1016%2fj.enggeo.2021.106090&partnerID=40&md5=71f80088ae6d433e5ee8495ccb8928a4
https://scholars.lib.ntu.edu.tw/handle/123456789/576006
Abstract
The 1999 Chi-Chi, Taiwan, earthquake (Mw 7.6) caused damage to 49 tunnels within 60 km of the epicenter, including the collapse of three mountain tunnels, ending the traditional perception that tunnels, and especially mountain tunnels, were earthquake-resistant. A series of studies that involved seismic damage investigation, physical model and numerical simulation experiments, numerical analyses and field monitoring have been carried out to investigate the damage mechanism, influencing factors and the seismic response of tunnels, and these are reviewed in this manuscript. The results of such studies over the last two decades demonstrate that tunnels suffer less seismic damage than surface structures. Most of seismic damage to tunnels involves failure of the adjacent ground or the movement of a fault that is crossed by the tunnel. Tunnel damage that is caused by ground motion occurs where the seismic effects are amplified, such as at the slope next to mined sections and portals, in shallow overburden tunnels, and at particular combinations of tunnel depth and geological conditions. Results of physical model-based tests using shaking tables and centrifuges reveal that tunnels exhibit rocking responses along with ovaling deformation or racking distortions under seismic excitation; also residual earth pressures remain on the tunnel side walls and internal forces of lining exist after shaking. The structural responses of a tunnel under non-uniform excitation are larger than that under uniform excitation. Beyond investigations of the damage mechanism and influencing factors, physical model-based tests provide experimental benchmarks for correcting numerical model settings and calibrating the characteristic parameters in numerical simulations, and validate the application of such models and simulations in the investigation of tunnel seismic responses. A fully dynamic analysis with complete descriptions of the topography and geological characteristics of a site, and the engineering characteristics of the tunnel and surrounding ground, is nowadays probably the most effective way for the seismic simulation of tunnels, and the design and evaluation of the same. An understanding of the state-of-the-art with respect to the seismic response of tunnels demonstrates the importance of three-dimensional geological models for tunnel seismic analysis; the evaluation of regional ground motion models that can capture the expected range of possible ground motions at tunnel site, and determinations of both the static and dynamic characteristics of geological conditions that are associated with site-scale vulnerabilities. Since residual earth pressures and internal forces remain on tunnel after an earthquake, the seismic damage to tunnels and loads and strain of the surrounding ground may accumulate. Methods for evaluating potential seismic damage to existing tunnels must be further developed, and more field monitoring of the seismic responses of tunnels is required. ? 2021 Elsevier B.V.
Subjects
Benchmarking; Dynamics; Earthquakes; Equations of motion; Numerical models; Pressure distribution; Retaining walls; Tunnels; Damage mechanism; Field monitoring; Fully dynamic analyse; Geological conditions; Ground-motion; Model-based test; Mountain tunnels; Physical model; Physical model-based test; Seismic damage; Seismic response; decadal variation; earthquake event; earthquake magnitude; seismic response; shaking table test; tunnel; Taiwan
Type
review

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science