Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Schottky Barrier Height Modulation of Metal/n-GeSn Contacts Featuring Low Contact Resistivity by in Situ Chemical Vapor Deposition Doping and NiGeSn Alloy Formation
 
  • Details

Schottky Barrier Height Modulation of Metal/n-GeSn Contacts Featuring Low Contact Resistivity by in Situ Chemical Vapor Deposition Doping and NiGeSn Alloy Formation

Journal
ACS Applied Electronic Materials
Journal Volume
3
Journal Issue
3
Pages
1334-1340
Date Issued
2021
Author(s)
Chuang Y
Liu C.-Y
Kao H.-S
Tien K.-Y
Luo G.-L
JIUN-YUN LI  
DOI
10.1021/acsaelm.0c01108
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103470039&doi=10.1021%2facsaelm.0c01108&partnerID=40&md5=5f1bc6555e29e4bb0d8cb4455a1db06b
https://scholars.lib.ntu.edu.tw/handle/123456789/581015
Abstract
GeSn complementary metal-oxide-semiconductor (CMOS) devices have attracted much attention for future VLSI technology nodes due to high carrier mobility. However, Fermi-level pinning in metal/n-GeSn contacts leads to high contact resistivity and limits GeSn CMOS devices for high-performance logic applications. In this work, we investigate Schottky characteristics and contact resistivity in the metal/n-GeSn contacts. High-quality n-GeSn layers were epitaxially grown by chemical vapor deposition with an in situ doping technique with a high carrier activation rate of 73% up to a doping concentration of ?1.3 × 1020 cm-3. The electron Schottky barrier heights of the metal/n-GeSn contacts with different Sn fractions and metal work functions were extracted by an I-T method. The results show that the Fermi level is pinned at an energy level slightly above the valence band maximum. The Schottky barrier height is highly correlated with the GeSn band gap energy and decreases with the Sn fraction. The contact resistivity of the metal/n-Ge0.9Sn0.1 contacts was extracted by a refined transmission line model and effectively reduced by increasing the doping concentration in the n-GeSn films. A post-metal annealing step at 400 °C was performed to further reduce the Schottky barrier height by forming NiGeSn alloys. A record low contact resistivity of ?1.5 × 10-7 ω·cm2 is achieved without any surface treatment. This is attributed to the reduced Schottky barrier height by increasing the Sn fraction in the n-GeSn film and the reduced Schottky barrier width due to the high carrier density achieved by in situ doping. ?
Subjects
Chemical vapor deposition; CMOS integrated circuits; Energy gap; Extraction; Fermi level; Hall mobility; Hole mobility; MOS devices; Oxide semiconductors; Schottky barrier diodes; Semiconductor alloys; Semiconductor metal boundaries; Surface treatment; Tin; Complementary metal oxide semiconductors; Contact resistivities; High-performance logic applications; Schottky barrier height modulation; Schottky barrier heights; Schottky characteristics; Transmission line modeling; Valence-band maximums; Semiconductor doping
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science