Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/581604
Title: Development of image recognition and classification algorithm for tea leaf diseases using convolutional neural network
Authors: Lee S.-H
Wu C.-C
Chen S.-F.
SHIH-FANG CHEN 
Keywords: Convolution; Crops; Image classification; Image recognition; Object detection; Pest control; Classification algorithm; Convolutional neural network; Convolutional Neural Networks (CNN); Faster R-CNN; Integrated pest management strategies; Object identification; On-site monitoring; Temperature and relative humidity; Neural networks
Issue Date: 2018
Source: ASABE 2018 Annual International Meeting
Abstract: 
Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically. ? 2018 American Society of Agricultural and Biological Engineers. All rights reserved.
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054192932&doi=10.13031%2faim.201801254&partnerID=40&md5=8f12679589c54f19ff52ac3b28855e8a
https://scholars.lib.ntu.edu.tw/handle/123456789/581604
DOI: 10.13031/aim.201801254
Appears in Collections:生物機電工程學系

Show full item record

SCOPUSTM   
Citations

4
checked on Dec 29, 2022

Page view(s)

43
checked on Sep 20, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback