https://scholars.lib.ntu.edu.tw/handle/123456789/592961
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHIA-YEN LEE | en |
dc.contributor.author | Hung, Yu Hsin | en |
dc.contributor.author | Chen, Yen Wen | en |
dc.date.accessioned | 2022-01-22T00:04:58Z | - |
dc.date.available | 2022-01-22T00:04:58Z | - |
dc.date.issued | 2021-01-01 | en |
dc.identifier.issn | 08848289 | en |
dc.identifier.uri | https://scholars.lib.ntu.edu.tw/handle/123456789/592961 | - |
dc.description.abstract | This study proposes a hybrid data science (DS) framework and reinforcement learning (RL) in data envelopment analysis (DEA). The framework supports the functional form identification of the production frontier and the RL derives the optimal resource reallocation policy which guides the productivity improvement. In fact, both DS and RL techniques complement efficiency analysis. Emphasizes on planning over evaluation, we use data generating process (DGP) and an empirical dataset of power plants to drive productivity to validate the benefits of the hybrid DS framework and RL, respectively. Based on the results, we find that the hybrid DS framework and RL can enhance the interpretation of the production frontier and identify the optimal resource policy. | en |
dc.relation.ispartof | International Series in Operations Research and Management Science | en |
dc.subject | Data envelopment analysis (DEA) | Data generating process | Data science | Reinforcement learning | Symbolic regression | en |
dc.title | Hybrid Data Science and Reinforcement Learning in Data Envelopment Analysis | en |
dc.type | book chapter | en |
dc.identifier.doi | 10.1007/978-3-030-75162-3_4 | en |
dc.identifier.scopus | 2-s2.0-85122424150 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85122424150 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.journalvolume | 312 | en |
dc.relation.pageend | 122 | en |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | book chapter | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | no fulltext | - |
Appears in Collections: | 財務金融學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.