Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Engineering Science and Ocean Engineering / 工程科學及海洋工程學系
  4. How Well Do Teachers Predict Students' Actions in Solving an Ill-Defined Problem in STEM Education: A Solution Using Sequential Pattern Mining
 
  • Details

How Well Do Teachers Predict Students' Actions in Solving an Ill-Defined Problem in STEM Education: A Solution Using Sequential Pattern Mining

Journal
IEEE Access
Journal Volume
8
Pages
134976-134986
Date Issued
2020
Author(s)
Norm Lien Y.-C
WEN-JONG WU  
Lu Y.-L.
DOI
10.1109/ACCESS.2020.3010168
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089307191&doi=10.1109%2fACCESS.2020.3010168&partnerID=40&md5=bae40f19c5b49e6b0ee7c39a8c6c51d7
https://scholars.lib.ntu.edu.tw/handle/123456789/625151
Abstract
Predicting students' line of actions helps educators give adequate guidance to students, but this remains a challenge in science, technology, engineering, and mathematics (STEM) education. Given this, there is a scarcity of related research that will help improve teachers' prediction capabilities on students' line of actions when tackling ill-defined problems (IDPs), as well as how emerging data mining techniques could contribute to such prediction. The present study aims to fill the gap by measuring the quality of teachers' predictions (labeled expert prediction), where 43 elementary teachers predict students' step-by-step actions when solving an IDP through the light path task (LPT), and then comparing its quality with that of machine prediction, executed via sequential pattern mining techniques. Data on students' lines of action were collected from 501 5th- and 6th-grade students, aged 11-12. The results showed the significantly lower accuracy of expert prediction compared to machine prediction, which highlights the advantages of using data mining in predicting students' actions and shows its possible application as a recommendation system to provide adaptive guidance in future STEM education. © 2013 IEEE.
Subjects
Data mining; ill-defined problem; machine prediction; problem-solving; sequential pattern mining; teacher effectiveness
Other Subjects
Engineering education; Forecasting; STEM (science, technology, engineering and mathematics); Students; Adaptive guidance; Elementary teachers; Lines of action; Prediction capability; Science , technology , engineering , and mathematics educations; Sequential-pattern mining; STEM education; Teachers'; Data mining
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science