Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Phase-field study of dendritic morphology in lithium metal batteries
 
  • Details

Phase-field study of dendritic morphology in lithium metal batteries

Journal
JOURNAL OF POWER SOURCES
Journal Volume
484
Date Issued
2021
Author(s)
CHIH-HUNG CHEN  
Pao, CW
DOI
10.1016/j.jpowsour.2020.229203
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/627585
URL
https://api.elsevier.com/content/abstract/scopus_id/85097068378
Abstract
Lithium metal is a promising anode candidate for high-energy-density secondary batteries due to its high theoretical capacity and low electrochemical potential, but the uncontrolled lithium dendrite growth causing the poor cycling performance and safety concerns becomes the main drawback in the lithium metal batteries (LMBs). This study presents a phase-field method for modeling the lithium dendrite formation in LMBs. In this model, the electrochemical kinetics is described by a modified Butler–Volmer equation for deposition non-uniformity, and the Nernst–Planck equations and charge neutrality condition are used to solve the electric potential field and the ionic concentration fields. Our simulation results show that this model is able to accurately describe the growth of mossy dendrites, which is missing in previous phase-field works. We found that the lithium dendrite growth is strongly affected by the deposition non-uniformity originated from the competition of SEI growth and lithium growth and the charge conditions. Under high deposition rates, the depletion of the lithium ionic concentration takes place near the anode, and the dendrite growth undergoes a transition from the reaction-limited mossy growth to the diffusion-limited fractal growth.
Subjects
LMB; SEI; Deposition non-uniformity; Lithium dendrite; Phase-field method; Concentration depletion; SOLID-ELECTROLYTE INTERPHASE; GROWTH MECHANISMS; ION BATTERIES; TRANSPORT-PROPERTIES; LIQUID ELECTROLYTES; SEI; ANODES; MODEL; ELECTRODEPOSITION; SIMULATIONS
Publisher
ELSEVIER
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science