Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Electron Injection and Gas Barrier Layers by Atomic Layer Deposition for Polymer LED
 
  • Details

Electron Injection and Gas Barrier Layers by Atomic Layer Deposition for Polymer LED

Date Issued
2011
Date
2011
Author(s)
Chang, Yi-Neng
URI
http://ntur.lib.ntu.edu.tw//handle/246246/251667
Abstract
This study addresses in stability issue of flexible polymer light-emitting diode (PLED) devices with a two-pronged approach based on atomic layer deposition (ALD): developing an inverted PLED device structure—which offers far superior inherent stability to that of the conventional structure—with a dual-functioning electron-injection layer/gas barrier by ALD at plastic-substrate-compatible temperatures, and developing a thin-film encapsulation technique by ALD that is compatible with the inverted PLED device. ALD ZnO was used as the electron-injection layer (EIL)/gas barrier, and a range of plastic-compatible deposition temperatures (70-90℃) were examined. Lower deposition temperatures were found to yield superior device performance, because they yielded lower carrier concentrations which allowed more effective hole-blocking at the cathode of the PLED devices, and they provided better gas-barrier function as a result of their low crystallinity. When applying an ALD HfO2/Al2O3 nanolaminated film to the PLED devices as an encapsulation layer, we observed severe encapsulation-induced degradation due to aggregation of our MoO3 hole-injection layer at the ALD temperature of 90ºC. We eliminated this degradation by developing a low-temperature (70 ºC) ALD process of Al2O3/ZnO nanolaminates, which combined with the ZnO EIL/gas barrier enabled plastic-based PLED devices to retain ~90% of their initial luminance upon storing in air for 1610 hours.
Subjects
polymer light-emitting diode
atomic layer deposition
zinc oxide
gas barrier
encapsulation
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R98527014-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):521c08b4c2bc0a9d80ca1f3a7cb7847f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science