Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Separation and Detection of Rare Cells in a Microfluidic Disk Platform
 
  • Details

Separation and Detection of Rare Cells in a Microfluidic Disk Platform

Date Issued
2010
Date
2010
Author(s)
CHEN, CHEN-LIN
URI
http://ntur.lib.ntu.edu.tw//handle/246246/249976
Abstract
Rare cells in blood often possess high clinical significance. However, cyto-analysis of rare cells often requires separation and detection with either procedure of substantial challenge. Circulating tumor cells (CTCs) in the peripheral blood of metastatic cancer patients represent a potential alternative to invasive biopsies as a source of tumor tissue for detection, characterization, and monitoring of non-haematologic cancer. This thesis outlines a novel disk-based microfluidic device to capture and detect rare cells from blood sample. Immunomagnetic negative selection and positive selection approaches were demonstrated in our disk platforms. For negative selection approach, the microfluidic platform’s unique features include multistage magnetic gradient to trap labeled cells in double trapping areas, drainage of fluid to substantially shorten detection time, and bin-like regions to capture target cells to facilitate seamless enumeration process. Proof-of-concept was conducted using wide range of MCF7 as target rare cells (stained with anti-cytokeratin-FITC antibodies) and spiked into Jurkat Clone E6-1 non-target cells (labeled with anti-CD45-PE and anti-PE BD magnetic beads). Then, mononuclear cells (MNC) from healthy blood donors were mixed with MCF7s, modeling rare cells, and tested in the disk. Results show the average yield of detected MCF7 is near-constant 60±10% over a wide range of rarity from 10-3 to 10-6 and this yield also holds for MCF7/MNC complex mixture. Comparison with autoMACS and BD IMagnet separators revealed the average yield from the disk (60%) is superior to that of autoMACS (37.3%) and BD IMagnet (48.3%). For positive selection testing, as proof-of-concept, experiments were conducted where MCF7 was used to simulate CTCs and healthy whole blood was used for background peripheral blood. A continual flow process via a centrifugal microfluidic disk platform to capture MCF7 in blood immunomagnetically and enumerate them on-disk with a complete batch process of multi-fluorescence labeling is presented. The MCF7 are labeled with anti-EpCAM-PE and anti-PE magnetic beads for magnetic force capturing and with anti-cytokeratin-FITC antibodies and Hoechst33342 for detection. In order to allow precise timing in liquid delivery during the multi-fluorescence labeling processes, on-disk deterministic vent valves were designed. To characterize the disk performance of target cell capturing and fluorescence labeling, three different labeling procedures were used. Results show that the cell-capture yield of the disk was about 65% and the throughput was 2ml/hr or more. After staining two-label fluorescence on the disk, the yield was around 50%. The sensitivity of the technique in enriching rare cells from whole blood (>1ml) is up to 10-7. Direct fluorescence labeling on the disk without sample transfer and manual operation greatly helped to reduce cell loss. The total procedure, from magnetic bead labeling to completing two-label fluorescence staining, takes place within 1.5 hours. In order to determine the efficiency of the disk in enumerating CTC from patient with epithelial cancers, the breast cancer data of patients were collected. Advantages of the present platform include simple operation, high throughput, an acceptable level of cell loss, and a potentially low system cost, which should substantially ease the effect in cyto-analysis of rare cells.
Subjects
rare cell
immunomagnetic separation
microfluidics
disk
centrifugal force
SDGs

[SDGs]SDG3

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-D92543010-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):d53317773d75138053ac24f246e11868

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science