曹恆偉臺灣大學:電信工程學研究所趙和慶Chao, Ho-ChingHo-ChingChao2007-11-272018-07-052007-11-272018-07-052007http://ntur.lib.ntu.edu.tw//handle/246246/58969在現今社會中衛星導航已經非常普遍的使用在汽車,飛機或是航海方面的定位上,目前在太空中運行的衛星導航系統主要為美國的GPS衛星系統和俄國GLONASS衛星系統,其中又以美國的GPS衛星系統為我們熟知和常用的衛星導航系統,除了GPS和GLONASS衛星系統外,歐盟也自行研發所屬的全球衛星導航系統,稱之為Galileo衛星系統,預計在2008年底系統架設完畢。 Galileo衛星系統有以下幾點特色,主要以民間用途為主要考量,與美、俄導航定位系統原以軍事用途不同,而且可以提供更加精準的定位誤差,並且和現有的GPS衛星系統與GLONASS衛星系統相容配合。 本論文中提出一個適用於同時接收GPS/Galileo衛星訊號的類比前端接收機架構,針對接收機的複數濾波器設計與分析、頻率合成器的非理想效應對後端數位部分的影響,和AGC演算法的設計進行研究與討論。GNSS (Global Navigation Satellites System) is the general meaning of the satellites-based navigation system. The available two satellite systems include GPS (Global Positioning System) in the United States and GLONASS (Global Navigation) in the Russia right now; and other system, Galileo which is developed by EU (European Commission) and ESA (European Space Agency) will be set up well in 2008. The Galileo satellite system has some following characteristics. It is different from United States and Russia navigation satellite system which aims military purpose object originally. It is mainly for civilian use worldwide. Galileo can provide a highly accurate, guarantee global positioning service under civilian control. It will be inter-operable with GPS and GLONASS, the two other global satellite navigation systems. In this thesis, an analog front end receiver architecture is presented to receive GPS and Galileo satellite signals simultaneously. Furthermore, the design and analysis of the complex filter, the non-ideal effects of the frequency synthesizer and the algorithm of the AGC (Automatic Gain Control) are also discussed.中文摘要 I 英文摘要 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 論文架構 2 第二章 GPS/Galileo 訊號特性與接收機架構 3 2.1 GPS/Galileo 衛星訊號頻譜 3 2.2 GPS/Galileo 調變方式 4 2.2.1 GPS訊號與調變方式 4 2.2.2 Galileo訊號與BOC(m,n)調變方式 5 2.3 GPS/Galileo訊號與雜訊強度 7 2.4 RF端接收機架構比較 9 2.4.1 系統接收機架構 9 2.4.2 超外差接收機架構 12 2.4.3 零中頻接收機架構 15 2.4.4 低中頻接收機架構 18 2.4.5 接收機架構比較 20 2.5 提出的低中頻GPS/Galileo接收機架構 21 第三章 複數濾波器設計與分析 23 3.1 鏡像干擾對低中頻接收機的影響 23 3.2 複數濾波器的簡介與原理 27 3.3 應用gm-c實現的複數濾波器與模擬結果 35 3.4 巴特沃斯(Butterworth)和切比雪夫(Chebyshev)LC型複數濾 波器的模擬與比較 45 3.5 分析非理想效應對複數濾波器的影響 49 3.5.1 蒙第卡羅(Monte Carlo)失真分析 50 3.5.2 等比例失真分析 52 3.5.3 非理想效應的比較 55 3.6 考慮I-Q正交相位混頻器與複數濾波器失真對鏡 像干擾消除比例(IRR)的影響 56 第四章 頻率合成器對接收機的影響與分析 65 4.1 頻率合成器架構簡介與參數設定 65 4.2 相位雜訊討論 66 4.2.1 相位雜訊簡介 66 4.2.2 頻率合成器迴路頻寬最佳化設計 68 4.2.3 相位雜訊對系統的影響 71 4.2.4 相位雜訊對後端基頻訊號處理的影響75 4.3 TCXO (溫度補償震盪器)特性對系統的影響 76 4.3.1 TCXO (溫度補償震盪器)的特性介紹 77 4.3.2 隨溫度改變對後端基頻訊號處理的影響 81 4.3.3 微小跳動(micro jump)對後端基頻訊號 處理的影響 83 第五章 自動增益控制設計與模擬 85 5.1 簡介 85 5.2 自動增益控制電路常見型態 87 5.2.1 回饋式自動增益控制電路(Feedback Type AGC) 87 5.2.2 前饋式自動增益控制電路(Feed-forward Type AGC) 88 5.2.3 雙迴路式自動增益控制電路(Dual Loop AGC) 89 5.2.4 混和信號式自動增益控制電路(Mixed-mode Type AGC)91 5.3 提出的自動增益控制方法 92 5.3.1 最佳化ADC 邊界(threshold)對SNR 影響 92 5.3.2 ADC輸入端能量強度最佳化 95 5.3.3 提出的AGC架構與自動增益控制演算法 96 5.3.4 2-bit 和 3-bit ADC 搭配 AGC模擬結果 103 第六章 結論與未來展望 109 6.1 結論 109 6.2 未來展望 110 參考文獻 1116324211 bytesapplication/pdfen-US全球衛星定位系統伽利略複數濾波器頻率合成器自動增益控制器GPSGalileoComplex filterFrequency SynthesizerAGC( automatic gain control)適用於GPS/Galileo接收機類比前端系統架構之分析與設計Analog Front End Architecture Analysis and Design for GPS/Galileo Receiverthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/58969/1/ntu-96-R94942087-1.pdf