陳復國臺灣大學:機械工程學研究所邱黃正凱Huang, Jheng-Kai CiouJheng-Kai CiouHuang2007-11-282018-06-282007-11-282018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/61177管件液壓成形技術應用在汽車輕量化的零組件方面有越來越多的趨勢,但其原始素材與製造方式皆與傳統的沖壓有所差異,因此本論文將探討管件材料性質以及模具設計方式。 本論文先藉由製管模擬來探討板材與管材材料性質之差異性,預期能夠藉由管件的幾何尺寸由板材預測管件的材料性質,在實驗驗證方面,選擇了不同尺寸之管材(四組熱軋鋼管、一組冷軋鋼管、三組不繡鋼管)比較板材與管件材料性質之差異性,並針對熱軋鋼管及不繡鋼管的部份建立了預測公式。本論文並對管材圓周方向的材料進行拉伸試驗,探討Bauschinger Effect對實驗結果之影響。最後建立一套管件材料性質的試驗流程,進行CAE模擬時可利用此方法快速的得到管件的材料性質。 在液壓成形製程中,成品常會有無法脹出的凹陷產生。本論文針對此現象分析管件在預成形時所允許之最大凹陷量,並進一步分析模具形狀對管件凹陷量的影響。管件下料尺寸亦是影響凹陷產生與否的因素之一。因此,當決定好管件下料尺寸之後,必須特別注意管件膨脹率在5﹪以下的截面,此處的成形結果很可能會有凹陷產生,最後藉由不同的模具設計方式改善管件成形後的凹陷情形。 在管件液壓成形製程規劃方面,本論文選取了一具有代表性的汽車結構件進行分析,由原始的彎管、預成形、到液壓成形皆建立了CAE模擬模式,並探討不同的預成形設計方式以及彎管半徑對管件最終成形之影響。本研究並實際配合廠商所生產之液壓成形結構件驗證模擬之正確性,由成品得知有限元素法軟體預測管件成形後的外形準確性相當高,成品產生凹陷的地方其趨勢和模擬結果是一致的。本論文所獲得之研究成果可提供管件液壓成形業者進行製程規劃以及模具設計時的參考。The application of tube-hydroforming technology to the parts of lightweight automobile is becoming more and more popular, but its original blank and manufacture processes are different from those in the conventional stamping. So, this paper will discuss the material properties of tubes and the methods of die design. This paper first discusses the differences of material properties between the plate and the tube by the simulation of tube-making, in order to predict the tube material properties by the dimensions of the tube. In terms of the experimental verification, this paper compares the material properties between the plate and the tube by experimenting on the tubes of different dimensions, including four hot-rolled tubes, one cold-rolled tube, and three stainless tubes. The results of the experiments can be used to establish the predictive formulas of the hot-rolled and stainless tubes. In addition, this paper discusses the Bauschinger Effect on the experimental results. Finally, this paper establishes a process for material tests. This paper also analyzes the maximum allowable wrinkle of the tube in the preform process and discusses the effect of die shape on the wrinkle of the tube. Another factor that influences the wrinkle is the tube size. When the tube size is determined, special attention should be paid to the section of the die at the tube expansion rate under 5%, where unexpanded hollowness happens easily. The last step is to improve the hollowness of the tube by different die designs. In the planning of the hydroforming process, the paper analyzes a representative automobile part to build up the CAE simulation model of tube bending, preforming, and hydroforming, and discusses the influence of different preform designs and bending radii on the final shape of the tube. In this paper, we also compare the simulation results with the actually hydroformed parts. The results show that there is a considerable accuracy of simulation by using the finite element method. The results of this study can be a reference for related academic research and can also be used to develop related products for industry production.目錄-----------------------------------------------------Ⅳ 圖目錄---------------------------------------------------Ⅶ 表目錄---------------------------------------------------XI 第一章 緒論-----------------------------------------------1 1.1 前言----------------------------------------------1 1.2 研究動機與目的------------------------------------5 1.3 文獻回顧------------------------------------------7 1.4 研究方法與步驟-----------------------------------11 1.5 論文總覽-----------------------------------------14 第二章 管件材料機械性質之測試------------------------15 2.1 管材機械性質測試方法建立流程---------------------16 2.2管材軸向與板材材料性質差異之模擬分析-------------18 2.2.1 製管模擬之動機與目的-----------------------18 2.2.2建立製管之模擬模型------------------------19 2.2.3材料性質對製管之影響----------------------22 2.2.4平均等效應變與偏移應變之關係---------------23 2.3 板材與管材軸向拉伸試驗---------------------------28 2.3.1 板材種類之選擇-----------------------------28 2.3.2 實驗方法與流程-----------------------------30 2.3.3管材軸向材料性質探討-----------------------32 2.3.4實驗結果----------------------------------34 2.4 板材與管材軸向材料性質之比較-------------------38 2.4.1 模擬與實驗結果之比較-----------------------41 2.4.2實際製管過程與製管模擬模型之比較-----------42 2.4.3實際製管過程管件應變之探討-----------------44 2.4.4結果與討論--------------------------------46 2.5 微硬度試驗--------------------------------------51 2.5.1實驗方法-----------------------------------51 2.5.2實驗結果-----------------------------------53 2.6 管材圓周方向拉伸試驗-----------------------------57 2.6.1試片尺寸大小對試驗結果之影響--------------59 2.6.2圓周方向90度與180度材料性質之比較------61 2.6.3管材軸向與圓周方向材料性質之比較-----------62 2.7結果與討論---------------------------------------66 第三章 預成形管件最大凹陷量分析--------------------69 3.1 CAE模擬模型之建立-------------------------------70 3.2 模擬結果與分析-----------------------------------73 3.2.1模擬模型之驗證-----------------------------74 3.2.2管件厚度對容許凹陷量之影響------------------77 3.2.3管件與模具接觸面積對成形之影響-------------82 3.3 模具外型與凹陷量之關係--------------------------84 3.3.1管件下料尺寸對凹陷量之影響-----------------86 3.3.2 模具設計方式對凹陷量之影響-----------------87 3.4結果與討論-----------------------------------90 第四章 管件液壓成形製程分析------------------------91 4.1 分析流程-----------------------------------------91 4.1.1 載具之選擇--------------------------------93 4.1.2 產品截面分析-----------------------------93 4.1.3 管材尺寸與成形壓力------------------------95 4.2 預成形及液壓成形模具設計-----------------------97 4.2.1液壓成形模具設計-------------------------98 4.2.2預成形模具設計---------------------------98 4.3 模擬分析結果-----------------------------------101 4.3.1 彎管之分析結果----------------------------101 4.3.2 預成形之分析結果--------------------------103 4.3.3 液壓成形之分析結果------------------------106 4.4 管件液壓成形製程參數分析------------------------109 4.4.1預成形方式對後續成形之影響---------------109 4.4.2彎管角度對後續成形之影響-----------------111 4.5 管件凹陷量之三維驗證----------------------------115 4.6 結果與討論--------------------------------------119 第五章 有限元素模擬驗證---------------------------120 5.1 預成形模具設計對成形之影響-------------------121 5.2 彎管角度對管件成形之影響---------------------125 5.3 結果與討論---------------------------------129 第六章 結論---------------------------------------------130 參考文獻------------------------------------------------1336563205 bytesapplication/pdfen-US液壓成形最大凹陷量預成形hydroformingBauschinger Effectmaximum wrinklepreform管材機械性質與液壓成形製程分析An Analysis of Tube Material properties and Tube-Hydroforming Processesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61177/1/ntu-94-R92522517-1.pdf