2009-11-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/700802摘要:在本計畫中,我們主要是研究以光注入式交互增益調制技術為基礎之頻率再生式10/40 GHz鎖模半導體光放大器光纖環飛秒雷射系統。此外,我們也針對此鎖模雷射系統去發展一套主動腔長穩定電路,此電路對主動鎖模光纖雷射腔長進行補償,以產生高重複率、高穩定度之高速鎖模脈衝。並藉由高速偵測器將高速光脈衝做光電轉換,再利用微波帶通濾波器濾出所需振盪分量,並加以放大迴授驅動高速電光調制器,同時,光電轉換後的訊號將進一步利用雙平衡微波混頻器與依微波標準振盪源進行比較,其頻率誤差將進一步轉換成誤差電壓去驅動高壓電路,然後再由壓電光纖拉扯器去補償此光纖雷射的腔長,以達到高穩定度輸出的光脈衝串。因此,在本計畫中,我們將發展光注入調變半導體光放大器之鎖模雷射技術、光纖腔長穩定鎖相迴路之設計。<br> Abstract: The target of this project is to create a regenerative 10 GHz mode-locked semiconductor optical amplifier fiber ring cavity laser system. In the mean time, we also try to develop a feedback circuit loop to stabilize the cavity length as well as the harmonic longitudinal-mode frequency of the mode-locked fiber laser automatically. Such a PLL controlled regenerative system facilitates to build up a high repetition rate, high stabilization, and high-speed mode-locked pulse. A high-speed photo-detector will be employed to convert the mode-locked SOA fiber laser from optical to electrical pulse train. The feedback loop is constructed with the use of the microwave band-pass filter to filter the 10-GHz oscillation and an amplifier to enlarge feedback signal for driving the high speed O/E modulator. A double-balanced mixer is used to compare the O/E converted signal with the standard 10-GHz microwave frequency clock, the error signal will be transformed into an error voltage and fed to drive the high voltage circuit for PZT controller. At last, the PZT fiber stretcher will compensate the cavity length of the SOA fiber laser and create a highly stabilized mode-locking pulse-stream via the build-up of such optical injection and PLL techniques.半導體光放大器鎖模雷射交互增益調制鎖相迴路RegenerativeSemiconductor Optical AmplifierMode-Locked Fiber LaserCross-Gain ModulationPhase Locked LoopPZT商用鎖相迴路控制頻率再生型半導體光放大器鎖模光纖雷射系統研發