Chen, Guey-ShyaGuey-ShyaChenJA-LING WUDuh, Wei-JouWei-JouDuhLIN-SHAN LEE2009-02-272018-07-062009-02-272018-07-06199301651684http://ntur.lib.ntu.edu.tw//handle/246246/142085https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027678001&doi=10.1016%2f0165-1684%2893%2990031-5&partnerID=40&md5=9a631f1bdf48893a695a2df1c0c64d8cThis paper presents some results on fixed-point error analysis of the fast Hartley transform algorithms. A novel scheme for preventing overflow is considered in the analysis. It is proved that error performance, defined based on the signal-to-noise ratio, can be improved for both the decimation-in-frequency and the decimation-in-time fast Hartley transform algorithms. © 1993.application/pdf363513 bytesapplication/pdfen-USDiscrete Hartley transform; error analysis; fixed-point arithmetic; round-off errorError analysis; Fourier transforms; Discrete Hartley transform; Error performance; Fixed point arithmetic; Round off error; Mathematical transformationsA novel scaling scheme for fast Hartley transformjournal article10.1016/0165-1684(93)90031-52-s2.0-0027678001http://ntur.lib.ntu.edu.tw/bitstream/246246/142085/1/06.pdf