周元昉臺灣大學:機械工程學研究所曾國岡Tseng, Kuo-KangKuo-KangTseng2007-11-282018-06-282007-11-282018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/61158壓電樑常用作感測器或致動器,在此等用途不論信號的輸出或輸入都是經由樑的表面,因此能準確而快速地預知樑表面的行為將對壓電樑的應用有極大的助益。目前對壓電樑的分析均採用位移模式,此等模式無法滿足樑表面以曳引力為已知之邊界條件,故無法準確地預測樑表面的行為。 本文利用無任何變分約束條件的Hellinger-Reissner變分原理推導壓電的樑模式,此壓電樑模式能滿足曳引力已知的樑表面邊界條件,成為一個能夠快速預測壓電行為的工具。 文中創新建立了應用於壓電體的Hellinger-Reissner變分原理,可將位移場、電位場、應力場、電位移場作為獨立變數,對高度及寬度方向作雙重冪級數展開,在不同邊界條件下將壓電體簡化為壓電樑模式。並且在簡潔的設定下導出靜態下的壓電致動器及感測器的樑模式微分方程式組,能簡易地處理壓電問題。以有限元素法軟體Ansys對所得結果作驗證,位移場、電位場、應力場、電位移場都能夠正確地預測,其中位移場及電位場的所得結果相當準確。此壓電樑模式的確能成為快速且準確預測壓電行為的工具。A piezoelectric beam is often used as a sensor or actuator. Because the output signals and input efforts are always passing through the surface of the beam, it would be grateful if the surface behavior of the beam can be predicted rapidly and precisely. However, the analyses of piezoelectric beams nowadays are always based on the assumed displacement fields. Such models cannot satisfy the traction-prescribed boundary conditions on beam surface. As a consequence, the behavior of the surface cannot be predicted precisely. In this thesis, piezoelectric beam models based on Hellinger-Reissner principle are derived. Since it requires no variational constraint, beam models satisfy both the traction-prescribed and displacement-prescribed boundary conditions become possible. Therefore, good tools to predict piezoelectric behavior precisely and rapidly can be obtained. The Hellinger-Reissner principle for piezoelectric materials is created in this thesis. Displacement, electric potential, stress, and electric displacement field are independent variables that are expanded by double power series in the depth and width directions. And the three-dimensional equations are further simplified into one-dimensional piezoelectric beam model. Under brief setting, the easy-using coupled sets of differential equations are obtained. The model has been verified with the FEM package “ANSYS”, all fields are predicted properly, and displacement and electric potential are especially precise. Therefore, this developed piezoelectric beam model can indeed predict the piezoelectric behavior fast and precisely.中文摘要 i 英文摘要 ii 目錄 iii 表目錄 v 圖目錄 vi 符號表 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文內容與目的 4 第二章 Hellinger-Reissner變分原理與樑模式 6 2.1 小變形彈性體的行為 6 2.2 最小位能原理、最小餘能原理及Hellinger-Reissner變分原理 8 2.3 靜態的彈性樑模式 9 2.4 動態的彈性樑模式 14 2.5 懸臂樑受均佈力時的靜態反應 19 2.6 樑模式比較 21 第三章 壓電體的變分原理 26 3.1 小變形壓電體的行為 26 3.2 壓電體的最小位能原理 28 3.3 壓電體的最小餘能原理 30 3.4 壓電體的Hellinger-Reissner變分原理 33 3.5 壓電體動態下的Hellinger-Reissner變分原理 37 第四章 壓電體的一維模式 39 4.1 三維的壓電體簡化為一維的壓電樑 39 4.2 寬度方向的簡化 48 4.3 有限次項的級數展開 51 第五章 壓電樑的簡易模式 56 5.1 上下表面電位已知、曳引力已知 56 5.1.1 樑模式的推導 56 5.1.2 退化為彈性樑 66 5.1.3 應用實例 67 5.1.4 比較與討論 72 5.2 驅動 方向位移之致動器 74 5.3 驅動 方向位移之致動器 77 5.4 感測器—上層邊界電位未知 81 5.4.1 樑模式的推導 81 5.4.2 應用實例 87 5.5 感測器—上層邊界電位為定值 88 5.5.1 樑模式的推導 89 5.5.2 應用實例 93 第六章 結論與建議 96 附錄 98 參考文獻 100 附表 102 附圖 107789584 bytesapplication/pdfen-US變分法壓電樑piezoelectricbeamvariation位移場與應力場兼顧的壓電樑模式The Piezoelectric Beam Models Based on both Displacement and Stress Fieldsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61158/1/ntu-93-R91522502-1.pdf