馬劍清臺灣大學:機械工程學研究所余志明Yu, Jhih-MingJhih-MingYu2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61183表面聲波元件(SAW)為一種廣泛應用的元件,如運用在濾波器、共振器、震盪器、感測器等,對現代生活帶來許多的便利性,而SAW會被廣為運用的幾個主因為體積小且為被動元件與可利用微機電製程大量製造等的優點。而為了提升元件的效應,必須使用高係數的壓電材料或是複合材料,也耦合了更多其他的效應在其中,如光電效應、熱電耦效應等,因此研究這些效應對表面聲波元件的影響就相當的重要。 在本文中,我們利用氧化鋅的光電特性與表面聲波元件間產生聲電耦合效應,藉此來製作光感測器,由於鈮酸鋰的表面波波速與機電耦合係數較高,可製作出高靈敏度的紫外光感測器,光波長感測範圍介於 之間,且可量測至 等級的微弱光源,由於單一線寬的表面聲波元件無法製作陣列化的光感測器,因此在本文中,我們利用斜指叉電極的特性,將光感測器製作為陣列化的量測元件,探討陣列化的感測元件在各種參數的變化下對表面聲波元件的影響,並成功的利用陣列化光感測器進行光強量測,並探討陣列化感測器的特性與量測結果比較。In recent years, surface acoustic wave (SAW) devices are commonly used as filters, resonators, sensors, etc.. SAW devices offer many attractive advantages, for example, they are passive and small by MEMS fabrication. They are highly sensitive and output signal has the form of RF signal allowing the combination with the wireless sensor. Sometimes, we must use piezoelectric materials with high coupling coefficients or layered structures in order to have better performance. Other interactions arise in SAW devices, such as temperature, and acoustoelectric effect. In this paper, we analyze the influence of UV light effect on the frequency characteristics of SAW devices, and these devices are used as a photodetector. In general, velocity and attenuation of SAW devices are affected by acoustoelectric interations and/or mass loading effect. In this research, the interactions of acoustoelectric effect with piezoelectric fields is investigated. The substrate used in the SAW device is lithium niobate (LiNbO3) crystal which has high acoustic velocity and large electromechanical coupling coefficient, so that the SAW device used as the photodetector is sensitive to the intensity of UV light. The wavelength of UV light is between and , and a intensity in the order of is easily detected from the SAW devices. The photodetector is designed as the array photo sensors in SFIT SAW devices. The array sensors are used to analyze the distribution of the UV light field and the characteristics of sensors are discussed.中文摘要I 英文摘要II 目錄III 表目錄VI 圖目錄VII 第一章緒論1 1.1研究動機1 1.2文獻回顧3 1.3本文內容6 第二章表面聲波元件的基本原理與理論模擬9 2.1壓電效應9 2.1.1壓電方程式10 2.2壓電基材的特性14 2.3表面聲波元件原理17 2.3.1表面聲波元件特性17 2.4脈衝函數模型理論 - Delta function model22 2.4.1單一頻率指叉電極換能器22 2.4.2寬頻指叉電極換能器25 第三章光電材料-氧化鋅36 3.1氧化鋅薄膜製作方式36 3.1.1射頻濺鍍法及其原理36 3.1.2鍍層成核與Thorton模型38 3.2氧化鋅薄膜特性40 3.2.1導電性質40 3.2.2光學性質41 3.3氧化鋅的分析與量測42 3.3.1氧化鋅薄膜表面與剖面狀態42 3.3.2X-ray 繞射分析43 3.3.3光學性質分析44 第四章實驗製成步驟與設備57 4.1實驗設計57 4.1.1壓電基板的選擇57 4.1.2斜指叉電極的設計58 4.1.3氧化鋅薄膜的幾何設計58 4.2微機電製程60 4.2.1晶圓清洗(clean)60 4.2.2金屬薄膜蒸鍍(Metallization)61 4.2.3微影製程(Lithography process)61 4.2.3.1塗佈光阻(PR coating)61 4.2.3.2曝光(Exposure62 4.2.3.3顯影(Development)62 4.2.4金屬蝕刻63 4.2.5氧化鋅薄膜沈積與蝕刻63 4.3量測系統架構64 4.3.1網路分析儀(Network Analyzer)64 4.3.2光源(Light Source)65 4.3.3單光儀(Monochromator)66 4.3.4光功率計(Power Meter)67 第五章實驗結果與討論82 5.1寬頻表面聲波元件特性量82 5.1.1操作頻率82 5.1.2指叉電極對數83 5.1.3指叉電極長度84 5.1.4延遲距離85 5.1.5頻寬86 5.2表面聲波元件之耦合效應與量測方87 5.2.1耦合效應87 5.2.2量測方法88 5.3氧化鋅光電效應對寬頻表面聲波元件影響之量測90 5.3.1氧化鋅薄膜厚度90 5.3.2氧化鋅感應區塊尺寸91 5.3.3操作頻率之影響92 5.3.4相對幾何位置92 5.3.5陣列排列93 5.4光感測器之分析與應用95 5.4.1光譜定量特性95 5.4.2重現性97 5.4.3光場分佈量測98 第六章結論與未來展望143 6.1結論143 6.2未來展望145 參考文獻1465528638 bytesapplication/pdfen-US寬頻表面聲波元件氧化鋅陣列光感測器紫外光SFITSAWZnOArraysensorphotodetectorUV寬頻表面聲波元件於陣列式光感測器之應用Application of Slanted Finger Interdigital Transducer SAW Devices to Ultraviolet Array Photodetectorsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61183/1/ntu-95-R93522509-1.pdf