陳林祈臺灣大學:生物產業機電工程學研究所邱景揚Chiu, Jing-YangJing-YangChiu2010-05-052018-07-102010-05-052018-07-102008U0001-2507200802324700http://ntur.lib.ntu.edu.tw//handle/246246/180205This study aims to develop a flexible, cost-effective but highly durable and sensitive amperometric glucose sensor for real-time monitoring of blood sugar and cellulose degradation, respectively. To this purpose, we investigated the use of a novel organic/inorganic bilayer, poly(3,4-ethylenedioxythiophene) (PEDOT)/Prussian blue (ferric hexacyanoferrate, namely PB), as an enhanced immobilization layer of glucose oxidase (GOD) on a screen printed carbon electrode. To assemble the amperometric glucose sensor, a carbon paste electrode (active area = 0.28 cm2) was screen-printed onto a flexible polyester (PET) substrate at first. Then a PB thin film was electrodeposited on the carbon paste electrode as a solid mediator to carry out the electrocatalysis of hydrogen peroxide, a byproduct indicating the glucose oxidation. Subsequently, a thiophene-based conducting polymer thin film, PEDOT, was grown electrochemically on the PB/carbon paste electrode in the presence of both 3,4-ethylenedioxythiophene monomers and GOD molecules. As a consequence, glucose oxidase molecules were entrapped in the PEDOT matrix atop the PB/carbon paste electrode, and an amperometric glucose sensor was thus fabricated. Before using, the sensor was stored in a phosphate buffer, pH 7.4 at 4 oC. In principle, when contacting an analyte solution containing glucose such as a serum sample or a degraded polysaccharide mixture, the GOD molecules inside the PEDOT matrix will specifically oxidize glucose, in the presence of oxygen, to gluconic acid and hydrogen peroxide. Then hydrogen peroxide will penetrate through the PEDOT layer and react with the solid mediator PB, which finally shuttles electrons to the carbon electrode and yields a cathodic current in response to hydrogen peroxide and thereby to glucose. Accordingly, our amperometric sensing experiment was performed by applying a constant potential of -0.1 V vs. Ag/AgCl, and the sensor was tested with a dilution series of glucose solutions in the presence of phosphate buffer, pH 7.4. With flow-injection analysis (FIA) and a sensing potential at -0.1 V vs. Ag/AgCl, the flexible biosensor exhibited a response of < 40 sec, a dynamic range from 100 uM to 30 mM and a sensitivity of 2.1 uA cm-2 mM-1. Also, the biosensor yielded highly reproducible current signals (RSD = 2.54%) and retained ca. 82% of the glucose sensing response after one-month storage at 4 oC. Furthermore, not only detection of cellulose saccharification product but also quantification of the sugar content of a serum was demonstrated successfully by showing high accuracy (RSD = 8.37%) and low interference. Therefore, we consider this new design of glucose sensor based on the PEDOT/PB bilayer is not only novel from the chemistry aspect but also promising for both bioenergy and biomedical applications.致謝……………………………………………………………... I文摘要……………………………………………………...… II文摘要………………………………………………………... III錄……………………………………………………………... V目錄………………………………..…………………………. VIII目錄………………………………..…………………………. XII一章 緒論……………………………………………………. 1 1.1 前言……………………………………………………. 1 1.2 化學修飾電極簡介……………………………………. 3 1.2.1 化學修飾電極之應用………….………………. 3 1.2.2 化學修飾電極之特性………………….………. 4 1.3 酵素固定化方法………………………………………. 4 1.4 網版印刷電極…………………………………………. 6二章 文獻回顧與研究目的…………………………………. 7 2.1 文獻回顧………………………………………………. 7 2.2 研究動機與目的…..…….……………………………. 19 2.3 研究架構………………………………………………. 20三章 實驗材料與研究方法…………………………………. 21 3.1 儀器設備………………………………………………. 21 3.2 實驗藥品及器材………………………………………. 22 3.3 實驗方法…………………………………………….... 24 3.3.1 基材之前處理………………………………..… 24 3.3.2 網版印刷電極之製作……………………….…. 24 3.3.3 定電位析鍍普魯士藍薄膜…...…………….… 28 3.3.4 PEDOT及葡萄糖氧化.………...…………………30 3.4 電化學分析…………….……………………..………. 33 3.4.1 葡萄糖感測器之電化學特性分析….…………. 33 3.4.2 修飾電極對過氧化氫之感測分析……….……. 33 3.4.3 葡萄糖感測器對葡萄糖之感測分析….………. 35 3.5 流動注射式分析系統之設計與製作………………….. 36 3.5.1 流動注射式分析系統之設計………………….. 36 3.5.2 流動注射式分析系統之製作………..……..… 36 3.5.3 流動注射式分析系統之葡萄糖感測分析…..… 37 3.6 纖維素水解…………………………………………..… 42四章 實驗結果與討論………………………………………. 43 4.1 前言……………………………………………………. 43 4.2 網印碳電極表面阻抗之量測…………………………. 44 4.3 普魯士藍薄膜烘烤對操作穩定性之影響…………..… 45 4.4 PEDOT[GOD]薄膜之析鍍特性分析……………….... 48 4.5 PEDOT/PB修飾電極對過氧化氫之感測分析……..… 50 4.5.1 感測過氧化氫之實驗結果………………..…… 52 4.6 酵素電極對葡萄糖之感測分析………………………. 56 4.6.1 葡萄糖之氧化感測分析….……………………. 58 4.6.2 感測平台之建立………….……………………. 61 4.6.3 葡萄糖之還原感測分析…………….…………. 64 4.6.4 纖維素降解葡萄糖之還原感測分析…….….. 70 4.7 無攪拌系統之葡萄糖感測分析……………………… 74 4.8 流動注射式分析之系統最佳化參數……...…………. 81 4.8.1 FIA系統之葡萄糖還原感測分析…...………… 85 4.8.2 血糖與纖維素醣化物之感測分析…...…….… 91 4.8.3 酵素電極之長期穩定性..…….............. 95五章 結論與建議……………………………………..….… 101 5.1 結論………………………………………………….… 101 5.2 建議……………………………………………….…… 103六章 參考文獻…….…………………...……………….…… 104application/pdf2860677 bytesapplication/pdfen-US電流式葡萄糖感測器可撓式電極聚二氧乙烯普魯士藍網版印刷amperometric glucose sensorflexible electrodepoly(3,4-ethylenedioxythiophene)Prussian bluescreen printing以普魯士藍/聚二氧乙烯噻吩複合薄膜製備軟性酵素電極與其生物感測應用研究Fabrication of Flexible Enzyme Electrodes based on the Prussian Blue/Poly(3,4-ethylenedioxythiophene) Bilayer nd Its Biosensing Applicationsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/180205/1/ntu-97-R95631010-1.pdf