指導教授:劉如熹臺灣大學:化學研究所陳宣宏Chen, Syuan-HongSyuan-HongChen2014-11-252018-07-102014-11-252018-07-102014http://ntur.lib.ntu.edu.tw//handle/246246/261330為加速燃料電池之實用化,開發具高活性、高穩定性與低成本之陰極觸媒為科學界之一大課題。近年藉沉積鐵氮碳奈米粒子於零維碳材或二維結構之石墨烯,並於氨氣環境進行熱處理,開發具一定活性、低雙氧水產率與近四電子轉移數之過渡金屬觸媒,但其活性與鉑等貴金屬觸媒仍有一定差距。 因觸媒催化能力與其結構具顯著相關性,藉調控觸媒之結構,可改善其對氧氣還原反應之活性以及副反應之產生。本研究將藉添加鉑金屬於鐵氮粒子之結構,藉由鉑較鐵富電子之特性,改善鐵氮觸媒之活性,並藉此為爾後富電子金屬改質方法之研究奠定基礎。此外此合成法將觸媒乘載於將金屬離子結合之熬合劑碳化所形成之碳材。不似過往金屬觸媒合成後,需額外添加碳材再經熱處理之方法,流程精簡。相較於已發展之合金觸媒,本研究所開發之觸媒具降低成本之優勢並可有效提升此非貴重金屬觸媒之催化活性。 藉調整合成方法後,本研究以X光粉末繞射儀(X-ray powder diffraction; XRD)鑑定觸媒晶體結構與純度;以感應耦合電漿質譜分析儀(inductively coupled plasma mass spectrometry; ICP-MS)與元素分析儀(elemental analyzer; EA)分析觸媒元素組成,藉穿透式電子顯微鏡(transmission electron microscopy; TEM)進行觸媒形貌、粒徑大小與分布之分析,以循環伏安電位儀(cyclic voltammetry)量測觸媒之電化學特性、氧氣還原(ORR)活性與雙氧水產生率,以X光吸收光譜(X-ray absorption spectroscopy; XAS)之X光近吸收邊緣結構(X-ray Absorption Near Edge Structure; XANES)量測觸媒元素之電子結構。藉由上述方法,確認藉添加鉑金屬於鐵氮粒子之結構將改善鐵氮觸媒之活性。To promote the commercial of fuel cell, designing a high activity, high stability and low cost catalyst was a critical issue. Recently, the catalyst which iron nitride nanoparticle deposited on the zero dimensional and three dimensional carbon support was synthesized under the ammonia atmosphere and demonstrated a well performance in activity, electron transfer and yield of hydrogen peroxide in oxygen reduction reaction. However, its activity was still lower than commercial Platinum catalyst. The electronic structure was an important factor to enhance the activity and inhabit the side reaction of catalyst. In present study, we established method to improve the activity by importing an electron donor, platinum for example, into the iron nitride catalyst enhance the back donation of active site. In the present study, the characteristics of catalyst were identified by following technology. Crystal structure identified X-ray powder diffraction. X-ray Absorption Near Edge Structure (XANES) study by using synchrotron radiation was applied for the d-band vacancy of iron and platinum. The oxygen reduction performance was identified by cyclic voltammery. Confirm the introduction of platinum into iron nitride catalyst would enhance the catalytic activity.口試委員會審定書 i 謝誌 ii 摘要 iii Abstract iv 總目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 燃料電池之歷史 1 1.2燃料電池介紹 3 1.2.1燃料電池特色 3 1.2.2燃料電池種類 3 1.2.3質子交換膜型燃料電池之發展 5 1.2.4質子交換膜型燃料電池之原理 5 1.2.5質子交換膜型燃料電池之構造 6 1.2.6質子交換膜型燃料電池之極化曲線 8 1-3 氧氣還原反應介紹 9 1.3.1 氧氣還原反應之重要性 9 1.3.2 氧氣還原反應之路徑 10 1.3.3 氧氣還原反應機制 10 1.4質子交換膜型燃料電池之陰極觸媒 14 1.4.1陰極觸媒之發展 14 1.4.2 鉑系陰極觸媒 15 1.4.3 非貴金屬系陰極觸媒 18 1.5研究動機與目的 22 第二章 實驗步驟與儀器分析原理 24 2.1 化學藥品 24 2.2 鐵鉑氮觸媒合成 25 2.3 觸媒電化學量測方式 27 2.4觸媒樣品之鑑定與分析 27 2.4.1 X光粉末繞射(X-ray powder diffraction; XRD) 29 2.4.2感應耦合電漿質譜分析(Inductively coupled plasma mass spectrometry; ICP-MS) 31 2.4.3元素分析(Eelemental analyzsis; EA) 34 2.4.4 穿透式電子顯微鏡(Transmission electron microscope;TEM) 35 2.4.5循環伏安電位(Cyclic voltammetry) 36 2.4.6 X光吸收光譜 (X-ray absorption spectroscopy; XAS) 37 第三章 結果與討論 41 3.1 觸媒結構分析 41 3.1.1 觸媒合成條件探討 41 3.1.2 粉末X光繞射圖譜 42 3.1.3 元素分析 46 3.1.4 高解析穿透式電子顯微鏡分析 47 3.1.5.1 X光吸收近邊緣結構 49 3.2觸媒電化學特性分析 53 3.2.1 循環伏安法分析 53 3.2.2 線性伏安法-氧氣還原反應活性測試 54 3.2.3 電子轉移數與雙氧水產率 56 第四章 結論 58 參考文獻 596271560 bytesapplication/pdf論文公開時間:2016/07/16論文使用權限:同意無償授權燃料電池觸媒氧氣還原應用於燃料電池氧氣還原反應之含氮鐵鉑觸媒合成與特性分析Nitrogen containing FePt Catalyst in Oxygen Reduction Reaction for Fuel Cellsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/261330/1/ntu-103-R01223120-1.pdf