管傑雄臺灣大學:電機工程學研究所尹又本Yin, You-BenYou-BenYin2007-11-262018-07-062007-11-262018-07-062007http://ntur.lib.ntu.edu.tw//handle/246246/53276傳統微電泳通道元件之外加電場普遍為直流電源,在電壓持續提供下,會造成單方向電荷持續累積,此意味著量測環境將隨電荷的累積持續變化,並降低量測結果的重複性;此電荷累積的效應,使量測環境隨量測時間改變,意即無法將長時間下影響訊號準確度的諸多複雜機制全部排除。有鑑於此,我們採用交流訊號量測方式使量測環境形成規律之充放電反覆循環,避免電荷持續累積之情形,並確保量測環境不隨時間改變,以將雜訊成分降到最低,同時可大幅提高訊號╱雜訊比。藉由生物分子在交流響應中表現出來的相位延遲現象,精準擷取出複數形式的響應參數,再將此同一機制下產生之虛部除以實部,得到各種不同生物分子的特徵響應值,中間包含生物分子相位延遲響應的資訊,這些都是重要的訊號。這種以搭配高頻低雜訊前置放大器而建立的鎖相放大器量測系統進行之量測,可實現高敏感度,依此構想期望可研發一種新型的生物分子ID建立方式。Typical micro-electrophoresis channel devices are usually applied with DC electric field, however, with continuous voltage supply, charge accumulation occurred only at one direction, which reduces data reproducibility during measurement. Besides, this effect change the environment during the measurement, it is difficult to exclude many complicate mechanisms which could affect measurement accuracy. So we decide to use AC signal measurement which can lead to regular charge recycling in micro-channel and avoid charge accumulation in the measurement environment. It ensures that the lowest noise exists in this environment and therefore increase the signal-to-noise (S/N) ratio. By measuring the phase delay phenomenon of bio-molecular under AC signal response, we can acquire data in a form of complex number. We can also calculate the individual response by dividing imaginary part with real part, both signals generated in the same mechanism. This measurement system implemented a lock-in amplifier with high frequency low noise pre-amplifier in advance and which can measure signals with high-sensitivity. We expect to develop a novel bio-molecular ID establishment from this new idea.誌謝……………………………………………………………………………………i 中文摘要………………………………………………………………………………ii 英文摘要………………………………………………………………………………iii 目錄……………………………………………………………………………………iv 圖目錄索引………………………………………………………………………… …vi 表目錄索引……………………………………………………………………………viii 第一章 緒論…………………………………………………………………………1 1-1 研究背景………………………………………………………………………1 1-1.1 生物晶片簡介……………………………………………………………3 1-1.2 電泳(electrophoresis)基本介紹……………………………………3 1-2 研究目的………………………………………………………………………6 第二章 微電泳晶片之設計與製作…………………………………………………7 2-1 微電泳晶片設計………………………………………………………………7 2-2 光罩之設計…………………………………………………………………10 2-3 微電泳晶片之製作…………………………………………………………11 2-3.1 樣品清洗……………………………………………………………11 2-3.2 光微影術……………………………………………………………12 2-3.3 蝕刻…………………………………………………………………13 2-3.4 金屬蒸鍍與光阻去除………………………………………………15 第三章 量測系統之設計……………………………………………………………19 3-1 前置放大器之設計…………………………………………………………19 3-2 量測系統架構………………………………………………………………21 3-3 量測原理……………………………………………………………………22 3-4 量測系統校正………………………………………………………………27 3-4.1 探討交流電路中的能量儲存元件…………………………………27 3-4.2 量測系統測試………………………………………………………29 3-4.3 BNC線電容值的量測………………………………………………33 第四章 理論模型推導、實驗結果與討論…………………………………………34 4-1 理論模型推導與程式模擬結果……………………………………………34 4-1.1 理論模型推導………………………………………………………34 4-1.2 程式模擬結果………………………………………………………38 4-2 實驗結果與討論……………………………………………………………39 4-2.1 實驗樣品準備………………………………………………………39 4-2.2 實驗結果與討論……………………………………………………40 第五章 結論與未來展望…………………………………………………………52 參考文獻……………………………………………………………………………53 附錄…………………………………………………………………………………564097313 bytesapplication/pdfen-US微電泳通道元件交流信號量測相位響應與環境無相關因子鎖相放大器量測系統Microelectrophoresis channel deviceAC signal measurementPhase responseEnvironment-independent factorLock-In amplifier measurement system研究交流偏壓下之離子響應A study of Ion response under AC Electrical Biasthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/53276/1/ntu-96-R94921057-1.pdf