李克強臺灣大學:化學工程學研究所閔偉倫Min, Wei-LunWei-LunMin2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/52259本研究主要是對球形液滴在球形孔洞中於交流電場下之振盪電泳行為,進行數值模擬並探討。我們以Zydney於1995年所提出的球形孔洞模型來描述此系統,所要求解的是一組電場、濃度場及流場相互耦合的電聲方程組。經過適當的假設與線性化之後,利用假性光譜法來求解此高頻系統。我們發現,由於離子雲的扭曲不可忽略,極化效應會使得振盪電泳速度產生一個極大值,並且振盪電泳速度的相角會有超前電場的現象產生。當液滴的表面電位變高或電雙層厚度變薄時,離子雲扭曲的程度會更加明顯,使得振盪電泳速度明顯上升。而當液滴的黏度越高時,振盪電泳速度會越低。當液滴的體積分率越大時,孔洞會壓縮液滴電雙層,使得振盪電泳速度減小。In this study, we investigate the dynamic electrophoretic mobility of a spherical liquid drop in a spherical cavity. The cavity model suggested by Zydney in 1995 is adopted to describe our system, and what we built is a set of electro-acoustic equations composed of the coupled electric field, the flow field, and the ion concentration field. With appropriate assumptions and simplifications, we are able to solve this set of electro-acoustic equations by the pseudo-spectral method. Given that the ion-cloud distortion can not be neglected, the effect of ion polarization disposes the dynamic mobility to a local maximum and a phase lead. When the surface potential is high or the thickness of the double layer is thin, the extent of the ion-cloud distortion will be more prominent. It is suggested that the lower the viscosity of a non-conducting liquid drop, the greater its dynamic mobility. As the volume fraction of the liquid drop is so large that the cavity compresses it, the dynamic mobility of the liquid drop will substantially decrease.中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 圖表目錄………………………………………………………………Ⅴ 第一章 緒論……………………………………………………………1 第二章 理論分析………………………………………………………13 2-1 系統描述…………………………………………………13 2-2 基本假設…………………………………………………16 2-3 主控方程式………………………………………………17 2-4 物理問題分析……………………………………………22 2-5 平衡系統與擾動系統……………………………………24 2-6 變數之無因次化與擾動狀態變數之線性化……………33 2-7 振盪電泳速度之計算……………………………………41 第三章 數值方法………………………………………………………49 3-1 假性光譜法………………………………………………50 3-2 空間映射…………………………………………………55 3-3 兩區聯解處理……………………………………………56 3-4 牛頓拉福生疊代法………………………………………58 3-5 數值積分…………………………………………………62 3-6 擾動狀態之數值處理……………………………………65 第四章 結果與討論……………………………………………………67 4-1 系統參數…………………………………………………67 4-2 液滴表面電位的影響……………………………………70 4-3 液滴內外流體之黏度比的影響…………………………77 4-4 電雙層厚度的影響………………………………………81 4-5 液滴佔孔洞體積分率的影響……………………………86 第五章 結論……………………………………………………………91 符號說明………………………………………………………………93 參考文獻………………………………………………………………97 附錄A 雙球座標下流力方程式的展開式……………………………103 附錄B 一顆球在無窮大區間流力方程式的推導……………………113 附錄C 液滴在Cavity與Cell Model中之振盪電泳邊界條件比較…119766028 bytesapplication/pdfen-US液滴孔洞振盪電泳速度電雙層高表面電位liquid dropcavitydynamic mobilitydouble layerhigh surface potential液滴在球形孔洞中之振盪電泳行為Dynamic Electrophoretic Behavior of a Liquid Drop in a Spherical Cavitythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52259/1/ntu-94-R92524069-1.pdf