2014-01-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/678431摘要:擬連體法是連結微觀分子動力模擬與巨觀有限元素法之跨尺度分析理論,能以有限的代表原子提供原子尺度的精確度,是目前發展最為成熟的跨尺度理論,也是最有潛力運用於奈米構件分析的模擬方法。目前擬連體法在靜力的理論發展已趨完善,但對於溫度與動力影響的理論仍相當缺乏。 本研究以靜力擬連體法為延伸基礎,研究溫度與動力的影響,發展適當的理論,希望能持續深化擬連體法理論,有效取代分子動力模擬,提供原子與連體有效的多尺度連結。本研究將針對目前面臨之重要課題與不足之處,包括:(1) 聚合法為基底之擬連體法受限於局部假設之溫度理論、(2) 擬連體法常用的溫度理論不適用於較高溫系統及 (3) 跨尺度系統波傳遞之問題,改良並發展相關創新理論逐一解決這些困難。本計劃預期於第一年將針對課題(1)發展更適當之擬連體理論,並建立比較之標準;第二年克服課題(2)與(3),使擬連體法能模擬真實的溫度與動力系統;第三年將擬連體法應用於生物感測器與熱電材料跨尺度分析與模擬,探討奈米尺度特徵對巨觀元件與材料性質的影響。<br> Abstract: Quasicontinuum (QC) method is a very promising multiscale analysis method to bridge atoms and continuum. The static QC has been developed in the past years with significant contributions from our research group. The static QC can now successfully simulate equilibrium problems atomistically (e.g., nanoindentation) without all the atoms. The objective of this research is to extend the static QC to finite temperature and to dynamic problems. This is a daunting task with a high reward: once succeeded, we will have a very powerful multiscale method to simulate nano- and micro-scale thermodynamic problems with atomistic accuracy but without all the atoms. The challenges and difficulties include: (1) cluster based finite temperature QC is now based on a local assumption that restricts its applicability, (2) the typical finite temperature QC is based on harmonic motion around the equilibrium and cannot predict aharmonic problems at higher temperature, (3) phonon wave propagation across the interface. All the tasks require novel and fundamental development associated with the theoretical aspects of the QC method. In the first year, we will focus on the first issue and develop a proper cluster-based non-local finite temperature QC method. In the second year, we will resolve the issues (2) and (3). We will then apply the QC developed herein in the third year and study novel nano-bulk phenomenon for microcantilever biosensors and thermoelectric materials.擬連體法靜力動力溫度統計力學多尺度模擬生物感測器熱電材料。quasicontinuumstaticsfinite temperaturedynamicsmultiscalestatistical mechanicsbiosensorthermoelectric materials.學術研究生涯發展計畫-桂冠型研究計畫【有溫度的動力擬連體法】