指導教授:鄭鴻祥臺灣大學:電子工程學研究所陳宗斌Chen, Tsung-PinTsung-PinChen2014-11-302018-07-102014-11-302018-07-102014http://ntur.lib.ntu.edu.tw//handle/246246/263907隨著半導體技術不斷地前進和微縮,從90奈米的應變矽技術到45奈米的高介電材料的金屬閘極技術,直到2011年Intel 22奈米鰭式電晶體的量產,說明了尺寸的微縮已從一般傳統的微縮轉換到了結構上的改變來跟上摩爾定律。故可以看出傳統的平面型電晶體已幾乎達致物理極限。未來可能取代的元件可能會是奈米碳管、共振式穿隧元件、單電子電晶體或自旋電子元件。本篇論文利用了矽鍺/矽之間的晶格不匹配所導致的應力釋放,在表面形成一個週期性的皺褶型新穎結構以期望突破目前元件上製作的難題。且這種應力造成的形變會將能帶分裂,可提升元件的特性。一般電路應用所熟知的P-N二極體,其電性產生主要因介面的位能所影響,本篇論文僅在矽鍺參雜三族元素硼,製作了一個在正負偏壓下類二極體電性行為的皺褶型新穎半導體元件。此雙向導通的特性加上此元件為磊晶在矽基板上,可以被整合在矽基材的互補式金氧半電晶體技術理及檢波整流的半導體元件,並應用在電子電路中。As the semiconductor technology has been moving on and scaling down, from 90nm strained-Si, 45nm High K metal gate, to the newest 22nm FinFET transistors produced by Intel in 2011, meaning the scaling problem is taken from conventional scaling down to change the structure to follow Moore''s law. Thus the technology seems to reach the limit of physics. Some reports predict that Carbon nanotube, resonant tunneling device, single electron or spintronics will replace the conventional CMOS technology, here we present the lattice mismatch induced strain-relaxation to fabricate periodic wrinkles novel structure made of SiGe/Si to overcome the difficulty of the nowadays device fabrication. The strain would split the band edge leading to a great performance on devices. The electrical property of P-N diode used in electronics application is affected by the potential barrier in the junction. Here we only use p-doped SiGe fabricating a diode-like characteristic from a wrinkled novel device operated at both forward and reversed bias. This bi-directional characteristic and deposited on Si wafer might be integrated in Si-based CMOS technology and rectifier elements applied in circuitry.Content i 中文摘要 iii Abstract iv List of Figures v List of Tables x Chapter 1 Introduction 1 1.1 Introduction 1 1.1.1 CMOS technology 1 1.2 Motivation 5 1.2.1 Novel structure of single crystal 5 1.2.2 Atomic model of Si and Ge 6 1.2.3 Strain effect 7 1.2.4 Heterojunction 9 1.2.5 Two dimensional electron gas (2DEG) 9 1.2.6 Critical thickness 11 1.2.7 Scattering mechanism 12 Chapter 2 Fabrication equipment and Characterization techniques 14 2.1 Fabrication equipment 14 2.1.1 Molecular Beam Epitaxy (MBE) 14 2.1.2 Reactive Ion Etcher (RIE) 17 2.1.3 Mask Aligner 18 2.1.4 Electron beam evaporator 19 2.2 Characterization techniques 21 2.2.1 Atomic Force Microscope (AFM) 21 2.2.2 X-Ray Diffraction (XRD) 23 2.2.3 Transmission Electron Microscope (TEM) 25 2.2.4 Hall effect measurement 26 2.2.5 Raman spectroscopy 28 Chapter 3 Device processing and Experimental progress 30 3.1 Device processing for thin film electrical diode 30 3.1.1 Sample Cleaning 30 3.1.2 Photolithography 31 3.1.3 Dry Etching 33 3.1.4 Metal Evaporation and Lift-off 33 3.1.5 Annealing 35 3.1.6 Selective etching (Wet etching) 35 3.1.7 Wire Bonding 37 3.2 Experimental progress 39 3.2.1 Strain induced wrinkling formation 39 3.2.2 Introduction of the experimental progress 42 Chapter 4 Experimental Results and Discussion 45 4.1 Sample growth 45 4.2 Transmission Electron Microscope (TEM) 47 4.3 X-Ray Diffraction (XRD) 48 4.4 Hall effect measurement 50 4.5 Wet etching condition 51 4.6 Atomic Force Microscope (AFM) 55 4.7 Scanning Electron Microscope (SEM) 59 4.8 Raman spectroscopy 61 4.9 I-V Characteristic 65 4.10 Calculation for the Si1-xGex / Si1-yGey freestanding film 71 4.10.1 Modeling of band structure from as grown sample 71 4.10.2 Energy profile modeled for both x and y direction. 73 Chapter 5 Conclusions and Future work 76 5.1 Conclusions 76 5.2 Future work 77 Reference 783021794 bytesapplication/pdf論文公開時間:2017/08/21論文使用權限:同意有償授權(權利金給回饋學校)皺褶型應力釋放矽鍺二極體互補式金氧半電晶體操作在正負偏壓下之微米尺度皺紋型二極體Micro-scale wrinkled diode operated at both forward and reversed biasthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263907/1/ntu-103-R01943107-1.pdf