2002-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/687306摘要:本計畫從全球碳與能量均衡的角度,提出永久解決方案:人工光合作用,以降低大氣層中CO2溫室氣體濃度並發展再生能源技術。任何轉製CO2必需再加入能量,廉價的能源和避免製造更多的CO2是必需考量的因素。太陽能是地球生物的終極能源,植物光合作用從古到今提供或儲存人類絕大多數使用的化石能源,以觸媒進行光催化還原CO2生產碳氫化合物,是模擬植物光合作用,具有再生能源和降低CO2的優點。目前之研究結果顯示使用負載銅的二氧化鈦(Cu/TiO2)為觸媒,以紫外光照射進行反應將CO2轉成甲醇,產量達到了最高值313 μmole/g,在1.98 wt% Cu/TiO2觸媒的光能效率(photo-energy efficiency)最高達到約2.5%,光量子效率(quantum efficiency)約10%。本計畫兩年內目標(1)新觸媒之研發,期能適用可見光能量範圍;(2)探討二氧化碳還原反應最佳條件,建立高光量子效率之反應條件與光觸媒特性之關連性;(3)製備光觸媒薄膜,進行氣相CO2還原反應,模擬植物葉片光合作用。從技術角度、經濟層面或環保的觀點,人工光合作用是可行而且值得研究進行。<br> Abstract: From the viewpoint of global carbon mass and energy balances, this research proposes a permanent solution, artificial photosynthesis, to reduce green-house gas CO2 and develop renewable energy technology. Any transformation of CO2 requires energy input. Thus low-cost energy resources and CO2-free process are essential factors to convert CO2. Solar energy is the ultimate energy source for all life in earth. The photosynthesis of plant provides most of the human energy now and stored energy as fossil fuel long time ago. Catalytic photo-reduction of CO2 can generate hydrocarbons, that is, mimic to photosynthesis. It has the advantages of both renewable energy and CO2 remedy. Currently, the CO2 photo-reduction was performed using TiO2 supported copper catalysts. The reaction converted CO2 into methanol under UV irradiation. Maximum methanol yield achieved 313 μmole/g. The experimental result indicated that 1.98 wt% Cu/TiO2 gave the highest photo-energy efficiency of ~2.5%, and quantum efficiency of ~10%. The objective of 2-year research are to (1) develop a novel catalyst activated by visible light; (2) investigate the optimal conditions of CO2 photo reduction, and correlate the high quantum efficiency and characteristics of photo catalyst;(3) carry out a vapor-phase CO2 photocatalytic reduction using thin-film catalyst mimic to plant leaves. From the perspective of technology, economy and environment, artificial photosynthesis is feasible and worth to explore.人工光合作用二氧化碳再生能源光催化還原二氧化鈦Artificial photosynthesisCO2renewable energyphotocatalytic reductionTiO2光觸媒進行人工光合作用