呂學士臺灣大學:電子工程學研究所莊誌逞Chuang, Zhi-ChengZhi-ChengChuang2007-11-272018-07-102007-11-272018-07-102007http://ntur.lib.ntu.edu.tw//handle/246246/57445由於許多先進國家包括台灣皆進入老年化社會,老人生活的照護將是一個很大問題。隨著半導體製程的進步,使得低成本、長時間使用、小型且可靠的無線感測點可以實現,藉由這些佈置身上的感測點,人們的健康可以隨時受到照護,行動不再受到限制,擴大了慢性病及老人的生活圈,且減輕其家人照料的負擔。 我們使用台積電2P4M 0.35um標準CMOS製程來實現我們所設計之感測點系統晶片,其內部電路包含微控制器、ASK傳送器、OOK接收器、儀器放大器、類比數位轉換器及電壓調節器。微控制器由我負責,其它則由實驗室其它學長及同學負責設計。此微控器具有二種版本,一種是特殊應用積體電路型式,此電路實現一由我們及金明輝博士所設計之無線感測協定。另一種為一可程式化微控制器,它能藉由機器語言控制它的操作,可應用在更廣的領域。此二種微控器及其它電路皆被整合成二個系統單晶片。 此特殊應用積體電路型式微控制器使用非同步數位信號接收及傳送模組當作它對外的界面,且具備循環冗餘檢查的方式,確定應用在生醫的無線訊號正確性, 還具備真實時間計時器來計算其動作之時間,它具有省電的睡眠模式來節省電能消耗。它一般被應用在19.2 KHz的頻率。 可程式化微控制器的資料寬度為8bits、指令集寬度為14 bits,共有35個指令,具備256 單元的資料記憶體及2k 單元的程式記憶體。擁有8 + 5 個一般支援輸入/輸出、二組通用非同步傳送接收模組、一組串列式週邊介面、三組計時器、一組看門狗模組、8種中斷方式及8層的位址疊層。它一般應用於4Mhz之時脈。Because many developed countries include Taiwan became aging society, the life nursing of the old will be a big problem. Depending on the advancement of semiconductor process, it makes this possible to achieve low-cost, long-tern, small and reliable wireless medical sensors. By the sensors placed on human body, people’s health can be cared for at any time and any where. It can expand the living community of the old and chronic-illness patients and reduce the burden of their family’s attention. We achieved the wireless sensing system on chip (SOC) by TSMC 2P4M 0.35um standard CMOS process. The chip includes Microcontroller, ASK transmitter, OOK receiver, Instrument Amplifier, Analog-to-Digital Converter and Voltage Regulator. Microcontroller is designed by me. The other circuits are designed by the other members of our laboratory. There are 2 types of Microcontroller. One is an ASIC microcontroller that realizes the protocol designed by us and Dr. Ming-Hui Jin. The other is a programmable one. We can control its operation by machine code and apply it to the broader application. The 2 types of Microcontroller are both integrated into SOCs. The ASIC Microcontroller uses UART as its interface and uses Cyclic Redundancy Checks to the correctness of wireless signal in the bio-medical application. It also equips a real-time timer to count the period of action and has sleep mode to save power. It is applied at 19.2-KHz clock rate in general. The programmable Microcontroller’s data bus is 8-bit width, program bus is 14-bit width and it has 35 instructions. It equips 256 words data SRAM and 2k words SRAM. It has 8+5 general purpose IOs, 2 UARTs, a SPI module, 3 timers, a watch dot, 8 types of interrupt, and an 8-level stack. The applied rate is 4MHz in general.Chinese Abstract I English Abstract II List of Contents III Index of Figures VII Index of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 1.3 ASIC versus Programmable Microcontroller 4 1.4 Symbols, Abbreviated Terms, and Notation 5 1.4.1 Symbols 5 1.4.2 Abbreviated Terms 5 1.4.3 Notation 6 1.5 References 8 Chapter 2 Digital Circuit Design 11 2.1 Design Flow 12 2.2 RTL Implementation Guide 16 2.3 Synthesis 19 2.4 Design for Test 22 2.4.1 Stuck-At Fault Models 23 2.4.2 Controllable and Observable Faults 24 2.4.3 Detecting Stuck-at Faults 24 2.4.4 Determining Fault Coverage 26 2.4.5 Automatically Generating Test Patterns 27 2.5 Digital Circuit Power Management 28 2.5.1 Determining Power Dissipation Equation 28 2.5.2 Low Power Design Techniques 29 2.5.3 Clock-Gating 30 2.5.4 Power-Gating 31 2.5.5 Multiple Vdd/Vss 32 2.6 References 33 Chapter 3 Wireless Sensor Node SOC with ASIC Microcontroller 35 3.1 Wireless Sensor Network Introduction 36 3.1.1 Network Topology 37 3.1.2 Protocols and Routing 38 3.1.3 Power Management 39 3.2 Wireless Sensor Network Protocol 40 3.2.1 Physical Layer 40 3.2.2 Network & Transport Layer 41 3.2.3 Packet Definition 45 3.2.4 State Transition 48 3.2.5 Error Checking 52 3.2.6 Network Default Parameter 54 3.3 System on Chip (SOC) Overview 55 3.3.1 The Goal 55 3.3.2 The Architecture 56 3.4 ASIC Microcontroller Feature & Architecture 57 3.4.1 Universal Asynchronous Receiver/Transmitter 59 3.4.2 Real-Time Timer 62 3.4.3 Core 63 3.4.4 Clock Source 63 3.4.5 Others 64 3.5 Analog & RF Circuit 65 3.5.1 ASK Transmitter 65 3.5.2 OOK Receiver 66 3.5.3 Voltage Regulator 67 3.5.4 Successive Approximation ADC 68 3.5.5 Instrument Amplifier 70 3.6 Measurement for Microcontroller 71 3.6.1 Design for Debugging 73 3.6.2 PCB Design 74 3.6.3 Testing Setup 75 3.6.4 The Results 76 3.6.5 Specification Summary 81 3.7 References 81 Chapter 4 Wireless Sensor Node SOC with Programmable Microcontroller 83 4.1 Microcontroller Technology Introduction 84 4.1.1 RISC versus CISC 85 4.1.2 Pipelining 87 4.1.3 Multi-Threading 89 4.2 System on Chip (SOC) Overview 90 4.2.1 The Goal 90 4.2.2 The Architecture 91 4.3 Programmable Microcontroller Feature & Architecture 92 4.3.1 Memory Organization 94 4.3.2 Special Function Registers 97 4.3.3 Interrupt 99 4.3.4 Timer 100 4.3.5 Serial Communication 102 4.3.6 Other Registers 106 4.3.7 Power on Reset & RC Clock Generator 106 4.3.8 EEPROM Loader 111 4.3.9 Clock Gating 112 4.4 Analog & RF Circuit 114 4.5 Measurement for Microcontroller 115 4.5.1 Design for Debugging 117 4.5.2 PCB Design 117 4.5.3 Testing Setup 119 4.5.4 The Results 121 4.5.5 Specification Summary 125 4.6 References 126 Chapter 5 Wireless Sensor Network Setup 129 5.1 Network Architecture 130 5.2 RF Signal Scheduling 131 5.3 Local Control Center Program 133 5.4 Communication Steps 135 5.5 References 137 Chapter 6 Conclusion 139 ANNEX A Mixed-Mode Circuit Design Flow 141 ANNEX B Debugging Lookup Table 143 ANNEX C Detailed Description of Special Function Registers 145 ANNEX D The Report of Automatic Testing Function Program 153 ANNEX E A Sub-board for Testing Digital Circuit 159 ANNEX F Related Patents Search and Analysis 1615036955 bytesapplication/pdfen-US微控制器中央處理單元系統單晶片無線感測網路感測網路協定MicrocontrollerCentral Processing UnitSystem on a ChipWireless Sensor NetworkSensor Network Protocol.[SDGs]SDG3應用於無線生醫感測網路之微控制器設計及應用Microcontroller Design and Application for Wireless Bio-Sensor Networkthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57445/1/ntu-96-R94943142-1.pdf