國立臺灣大學電子工程學研究所管傑雄2006-07-262018-07-102006-07-262018-07-102005-07-31http://ntur.lib.ntu.edu.tw//handle/246246/20036本研究架構了正立式與倒立式的兩種內嵌光鉗差動共焦顯微鏡,詳細描述系 統的架構與元件規格與光路設計。在正立式光鉗架構中,量得了光鉗的Q 值, 並進行了位移偵測的實驗,計算出光鉗的彈力常數k。在倒立式光鉗差動共焦顯 微鏡的架構中,使用了四象限二極體進行橫向位移偵測,結合差動共焦顯微鏡的 縱向解析率,得到了小球三度空間的定位能力。校正結果顯示X、Y、Z 三軸的 解析率分別為為8 nm 、10 nm 與5 nm,同時各具有1 μm 的動態範圍。而量測 小球在光鉗中同時受布朗運動擾動的頻譜訊號,由勞倫茲分佈的擬合曲線截止頻 率可推估水的黏滯係數,並與一般標準值誤差約在1%左右,驗證了本系統可以 小球的動態頻譜分析,得到相當精準的黏滯度估算。Upright and inverted configurations of optical tweezer embedded differential confocal microscopes are constructed. The Q value and the spring constant k of optical tweezer are characterized in the upright configuration system. In the setup constructed with inverted microscope, a quadrant photodiode is used to perform detection of lateral displacement. Combining with the depth resolution power of differential confocal microscope, three-dimensional positioning of a microsphere has been verified. Within 1-μm dynamic range in three axes, the resolutions of X, Y, and Z axes are 8 nm, 10 nm, 5 nm, respectively. By measuring the power spectrum density of silica bead trapped in optical tweezer, the cut-off frequency of Lorentz distribution is fitted. With the cut-off frequency and the spring constant k, the coefficient of viscosity of water is estimated in the experiment, of the error within 1% from the standard value.application/pdf571253 bytesapplication/pdfzh-TW國立臺灣大學電子工程學研究所內嵌光鉗差動共焦顯微鏡黏滯係數optical tweezer embedded differential confocal microscopes are constructedcoefficient of viscosity微流體黏滯度分析系統之設計與研製reporthttp://ntur.lib.ntu.edu.tw/bitstream/246246/20036/1/932213E002074.pdf