黃漢邦臺灣大學:機械工程學研究所陳彥宗Chen, Yen-TsungYen-TsungChen2010-06-302018-06-282010-06-302018-06-282009U0001-2407200916180500http://ntur.lib.ntu.edu.tw//handle/246246/187099本論文的主要目的,是設計一個可供多軸機械手臂使用的控制平台以達到模組化與容易建立的目的。並針對擬人型機械手臂開發一高階手臂控制器。配合適當的演算法來達成機械手臂的動作。控制平台部份,本論文提出兩種手臂控制平台。第一種是針對高階手臂控制器的實現,第二種是針對即時軌跡規劃系統的實現兩種平台均具有容易架設與模組化的特點。高階手臂控制器部分,藉由探討多軸手臂運動的特性,提出一針對擬人型手臂的控制方法。考慮到多軸軌跡追蹤的關係,能對各軸運動做出及時的修正與補償。相對於傳統單軸控制法,此種方法可使機械手臂空間位置的精確度提升。實際硬體上,兩個平台分別使用sbRIO 9642 與MCDC 3006S單軸控制器實現手臂控制。實驗結果証實此兩種手臂控制平台可達到論文所設定的目標。The main purpose of this thesis is to design a platform for a robot arm that is easy to construct and modulize, and to design a multi-axis controller for a humanoid robot arm. For the platform structures, this thesis developed two types of platforms. One is designed to test the controller, where the other is designed to test the planner. These two platforms are easy to construct and modulize.n the control algorithm design, this thesis analyzed the multi-axis motion system and purposed a control strategy for the humanoid robot arm. By analyzing the relationship between the multi-axis systems, the author can apply a controller to compensate for each axis in real-time. In comparison to a conventional controller, the controller the author proposed can provide better tracking results for a multi-axis robot arm in task space. For the integration of these two platforms, the author employed sbRIO 9642 and MCDC 3006S motor controllers. The experimental results show that the two platforms can meet the requirements.摘要 iiibstract ivist of Tables viiiist of Figures ixomenclature xihapter 1. Introduction 1.1. Motivation 1.2. Related Works 3.3. Thesis Organization 4.4. Contribution 5hapter 2. Kinematics of Robotic Systems 7.1. Kinematics and Local Optimization 7.1.1 Forward and Inverse Kinematics 7.1.2 Singularity Avoidance 8.1.3 Joint Limit Avoidance 10.1.4 RWLS Inverse Kinematics 11.2. Trajectory Planning 12.2.1 Modified Tension Spline 13hapter 3. Multi-Joint Control Scheme 21.1. The Independent Joint Controller of Robotics 21.2. Multi-Joint Control Analysis 25.3. Estimated Contouring Error Vector 29.4. Cross-Coupling Control Gain 32.5. Cross-Coupling Control Strategy 33hapter 4. Arm Control Platform 37.1. Architecture of the Robot Platform 38.2. Module Design 39.3. Platform for Arm Controller 40.3.1 Architecture of Arm Controller Platform 40.3.2 Planner Module 41.3.3 Controller Module 42.3.4 Driver Module 43.4. Platform for Arm Planner 44.4.1 Architecture of Arm Planner Platform 44.4.2 Sensor Module 45.4.3 Planner 46.4.4 Controller and Driver Module 47.5. Comparison between Two Platforms 48hapter 5. Experiments and Results 49.1. Experiments for Arm Controller Platform 49.1.1 Planner Module and GUI Module 50.1.2 Controller Module 50.1.3 Driver Module 53.1.4 Motor Module 55.1.5 Experimental Results for the Arm Controller Platform 55.2. Experiments for the Arm Planner Platform 72.2.1 GUI Module and Planner Module 73.2.2 Controller and Driver Module 73.2.3 Experimental Results for the Arm Planner Platform 75hapter 6. Conclusions and Future Work 79.1. Conclusion 79.2. Future Works 80eferences 815441799 bytesapplication/pdfen-US軌跡規劃馬達控制多軸運動控制交叉耦合控制Trajectory planningMotor ControlMulti-Axis ControlCross-Coupling Control.多軸機械手臂平台開發與控制Development of the Multi-Axis Control Platform for Robot Armthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187099/1/ntu-98-R96522805-1.pdf