張正憲臺灣大學:應用力學研究所吳明至2007-11-292018-06-282007-11-292018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61876為了解決微懸臂梁感測器實驗所耗時間過長的問題,我們從文獻中找出前人用蘭格繆爾吸附動力模式,所建立時間和覆蓋率的模型,經由實驗數據分析的結果發現一階蘭格繆爾吸附模式是最符合的數學模式,藉由這個模式我們可以成功的從實驗初期所量測到的撓曲量,來預測出抗原的濃度。 在固液相抗原和抗體的反應中會有二種過程,第一種是質量傳輸過程,第二種是化學反應過程,質量傳輸過程是跟對流擴散作用有關的,完全或部分的質量傳輸限制會導致抗原從流體本體擴散到表面的速度比抗原和抗體化學反應的速度來的慢,為了決解這個問題我們使用交流電場產生渦旋流場來加快抗原從流體本體到表面的速度,經由有限元素法分析我們做了電極尺寸和電極寬度的最佳化,成功的加快達到穩態的時間。接著我們將交流電場所產生的流場效應用在微混合器上,以改變幾何形狀的被動式混合器和施加交流電場的主動式混合器做比較,得到的結果是主動式微混合器能有效的提高混合品質。摘要.....................................................I 目錄.....................................................II 圖目錄...................................................V 表目錄.................................................. IX 符號對照表.............................................. XI 第一章 導論...............................................1 1.1研究動機............................................1 1.2文獻回顧............................................2 1.3研究方法............................................4 1.4論文架構............................................5 第二章 基礎理論...........................................6 2.1蘭格繆爾吸附動力模式................................6 2.1.1擴散控制模式.....................................6 2.1.2化學反應速率控制模式.............................7 2.1.3擴散控制和化學反應速率控制模式...................7 2.2電熱力的理論分析....................................8 2.2.1交流電動流的種類.................................8 2.2.2電熱力的簡介.....................................9 2.2.3電場的統御方程式................................10 2.2.4溫度分佈的統御方程式............................10 2.2.5流場的統御方程式................................11 2.2.6濃度分佈的統御方程式............................12 2.2.7反應面的統御方程式..............................12 2.3微混合器............................................13 2.3.1統御方程式.......................................13 2.3.2混合效能評估.....................................13 第三章 數據分析與數值模擬................................15 3.1蘭格繆爾吸附動力模式................................15 3.1.1實驗的簡介.......................................16 3.1.2曲線模擬的結果...................................17 3.2施加交流電場加快反應面反應速率的模擬................19 3.2.1實驗數據與模擬的差異.............................19 3.2.2流道尺寸與入口流速的設定.........................20 3.2.3電極寬度的設計...................................21 3.2.4電極間距的設計...................................22 3.2.5工作頻率的設計...................................22 3.2.6反應面位置的設計.................................23 3.2.7電壓大小的設計...................................23 3.2.8不同入口流速對反應速率和生成濃度分佈的影響.......23 3.2.9微懸臂梁在不同流速下剪力和壓力分佈對撓曲量分析...24 3.3 Y型流道微混合器品質分析............................25 3.3.1流道尺寸的設定...................................25 3.3.2擴散係數和流速對混合品質的影響...................25 3.3.3不同位置截面的混合品質...........................26 3.3.4 利用流道的幾何形狀來提升混合品質................26 3.3.5施加電極來提升混合品質...........................27 第四章 結論與未來的展望..................................30 5.1結論................................................30 5.2未來的展望..........................................30 參考文獻.................................................32 附圖.....................................................34 附表.....................................................72 附錄A 電熱力的推導.......................................81 附錄B 電熱力的解析解.....................................832895939 bytesapplication/pdfen-US微懸臂梁感測器微混合器有限元素法micro-cantilever sensormicromixerfinite element method微懸臂梁感測器實驗數據分析及交流電場對反應面和微混合器之影響thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61876/1/ntu-95-R92543003-1.pdf