2013-08-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/648770摘要:肌電生物回饋儀輔助之出力控制訓練對中風患者穿顱磁刺激誘發之 脛前肌神經興奮性與動作功能的療效 研究背景與目的:脛前肌(tibialis anterior)出力控制不良(impaired force level control)是造成腦中風患者踝關節背屈障礙並影響平衡與行走功能的重要因素;肌電生物回饋儀(electromyographic biofeedback,簡稱 EMG biofeedback)則是最常被建議的輔助治療工具。本研究室於民國 100年獲得行政院國家科學委員會一年的經費補助,以肌電生物回饋儀輔助脛前肌出力控制訓練,探討固定與變異練習模式對慢性腦中風患者穿顱磁刺激誘發之脛前肌神經興奮性、出力控制學習、平衡與行走功能的療效,預計將於民國 102年 7月完成第一階段的計畫。初步研究結果顯示變異練習模式的肌電回饋儀訓練組其脛前肌神經興奮性、出力控制、平衡與行走功能均有改善較多的趨勢。同時,我們觀察到在任務取向功能性動作下進行肌電生物回饋儀出力訓練似乎比在傳統坐姿進行脛前肌出力訓練更能誘發脛前肌神經興奮性及改善動作功能。因此,本研究室擬依據此研究架構進行第二階段研究,探討加入任務取向觀點所設計之肌電生物回饋儀輔助之出力動作訓練對腦中風患者神經興奮性及動作功能的療效。本研究第一期計畫於民國 101年獲得校內 91萬元之貴重儀器補助,新購一台穿顱磁刺激器(transcranial magnetic stimulation,簡稱 TMS),為系內之重點研究。目前尚缺聯結穿顱磁刺激器的肌電圖儀以進行資料的收集和分析,期望能申請到民國 103年國家科學委員會配合款的補助,購齊肌電圖研究設備以進行後續第二階段之研究。研究設計與方法:本研究為單盲設計之隨機分組控制實驗。所有受試者被隨機分配於三組:變異練習、固定練習和對照組。預計收案 60位慢性腦中風患者,每組各 20人。每位受試者均接受 60分鐘、每週三次、共六週的訓練;變異練習和固定練習組為肌電生物回饋儀輔助之患側脛前肌出力控制與相關之任務導向功能性脛前肌出力訓練,對照組為上肢運動訓練。變異練習組以肌電生物回饋儀顯示 之脛前肌最大收縮肌電量的 25%、50%、75%及 100%為隨機訓練目標。固定練習組則以肌電生物回饋儀顯示之脛前肌最大收縮肌電量為訓練目標。每位受試者接受訓練前、後、訓練後二週和六週共四次評估。評估項目包括脛前肌最大肌力、小腿後肌痙攣(calf muscle spasticity)、脛前肌出力錯誤率、電腦動態平衡儀之動態平衡測驗、行走速度、計時起走測驗(Timed Up and Go Test, 簡稱 TUGT)與穿顱磁刺激誘發之神經興奮性,包括脛前肌運動閾值(motor threshold, 簡稱MT)與徵召曲線(recruitment curves)等。以SPSS17.0軟體進行級內相關(Intraclass Correlation Coefficient,簡稱 ICC)檢定脛前肌運動閾值與徵召曲線相關性及重複性變異數分析(Analysis of Variance for repeated measures, repeated ANOVA),對每一評估項目分別探討訓練前後三組差異。以史皮爾曼分析(Spearman test)探討動作表現的改變與神興奮性變化的相關性。顯著差異水準定為 0.05;若無顯著差異則以敘述性統計(descriptive statistics)及趨勢圖來探討資料特性。預期效果與臨床應用:預期本研究結果為變異練習與固定練習組的受試者在接受六周的肌電生物回饋儀輔助之脛前肌出力控制訓練後,脛前肌最大肌力較對照組有立即明顯的進步,固定練習組進步程度大於變異練習組。然而,只有變異練習組可以立即且長期改善腦中風患者的脛前肌出力錯誤率、脛前肌神經興奮性、平衡與行走功能。變異練習與固定練習組在訓練後小腿後肌痙攣都沒有顯著增加。此外,脛前肌出力控制能力和平衡與行走等動作功能與脛前肌神經興奮性呈現正相關。此研究成果顯示變異練習模式的肌電生物回饋儀輔助之任務取向功能性動作出力控制訓練能誘發脛前肌神經興奮性,並可有效改善慢性腦中風患者出力控制能力、平衡與行走功能。利用肌電生物回饋儀進行變異練習的功能性動作出力控制訓練是一種有效的訓練方式。<br> Abstract: Impaired force level control of tibialis anterior (TA) is a critical factor to cause ankle dorsiflexion deficit and impact walking and balance function for people with stroke. Electromyograghic biofeedback (EMG biofeedback) has been suggested to be a suitable implement to assist force level control training, but research literatures thus far have yet to provide convincing evidences to support its effectiveness. Our laboratory received a grant support from the National Science Council (NSC) in 2011 to investigate the effects of EMG biofeedback assisted TA force level control training in people with chronic stroke. This first-stage study is proceeding as scheduled and will be closed in 2013. The preliminary data showed variable practiced EMG biofeedback training seems to have better effects on TA corticospinal excitability, force level control ability, balance and gait performance. We also observed that the effects of EMG biofeedback training under task-oriented functional movements seems superior to training in traditional sitting postures as conducted during the first-stage of this research. Thus, we are proposing a second-stage study to further examine the effects of EMG biofeedback assisted TA force level control emphasizing task-oriented functional movements during training to enhance balance and gait performance. Furthermore, to investigate the effect of such training on the corresponding changes of corticospinal excitability using transcranial magnetic stimulation (TMS) in people with chronic stroke. This second-stage proposal has been identified as a major research area of our school, and the College of Medicine has supported us by granting the purchase of a new TMS system in 2012. We hope that with this series of research may clarify the effects of EMG biofeedback of TA muscle training on balance and gait function, as well as shed lights on the underlying neuromechanisms using the TMS system. Study Design and Methods: This study is a single-blind randomized controlled trial. Sixty participants will be recruited and randomly assigned to one of the three groups: constant practice, variable practice and control group. Participants in the two experimental groups receive 3 days per week for a total of 6 weeks of EMG biofeedback assisted force level control training of TA and TA related functional activities. For the variable practice group, the participants will practice exertion of force output levels at 100%, 75%, 50%, and 25% of maximal TA EMG signal with EMG feedback. For the constant practice group, the goal of force level control training is 100% of maximal TA EMG signal with EMG feedback. The control group participants will practice upper extremity exercise program. TA force control error and balance and gait-related motor functions, such as TA strength, calf muscle spasticity, walking speed, Timed Up and Go test (TUGT), and dynamic balance test and corticospinal excitability including motor threshold (MT) and motor evoked potentials (MEP) recruitment curves of TA will be evaluated at baseline, post-training, two weeks after training and six weeks after training. SPSS 17.0 will be used for statistical analysis. Anticipated results: We anticipate that participants in two experimental groups may demonstrate immediately changes in TA strength more than control group. And the effects in the constant practice group is more effective than the variable practice group. However, only the variable practice group will demonstrate ability to modify and vary force level control during balance and gait tasks, and reveal corresponding changes in MEP recruitment curves of TA.腦中風穿顱磁刺激肌電生物回饋動作功能神經塑性力量stroketranscranial magnetic stimulationEMG biofeedbackmotor functionneural plasticityforceEffects of Force Level Control Training Using EMG Biofeedback on Transcranial Magnetic Stimulation-Induced Excitability to Tibialis Anterior and Motor Functions after Stroke