2014-06-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/686538摘要:本計畫主要想與合作廠商共同合作開發InGaP/GaAs結構的「垂直共振腔電晶體雷射」(Vertical-Cavity Transistor laser, VCTL),以及高速面射型雷射(Vertical-Cavity Surface Emitting Laser, VCSEL),由合作廠商提供雷射的磊晶成長和材料校正的服務,由本實驗室來完成雷射的製程及量測,藉此來改善雷射的元件特性、光輸出頻寬及功率損耗,更可將電晶體雷射由學術界應用到產業界上,帶動國內光通訊產業的發展。 垂直共振腔雷射(VCSEL)是目前主流1-10 Gigabit/s 短程光通訊系統光源,未來在短程傳輸纜線的應用,更具有十分廣大的市場,取代傳統銅導線、應用在像是 USB、HDMI 的傳輸方式。就商業化來說,垂直共振腔雷射的設計對量產來說價格可以比較便宜,更容易微小化,更容易檢測,較容易耦合至光纖等優點,因此目前有許多研究方向,都朝向將垂直共振腔推向 40 Gb/s 的市場來邁進。 垂直共振腔電晶體雷射是一種全新的三端半導體元件,它繼承了電晶體快速的優點和雷射的特性,能同時輸出「電」訊號和「光」訊號,並達成在室溫下以「電壓調變」的方式,提供超高速的電、光直接調變訊號,提供低能耗、低成本,高傳輸量、高資料密度的傳輸光源,以利用在下一代的高速電腦運算系統。「電晶體雷射」提供了快速的載子復合放光生命週期(~ps),理論上其高速直接調變的頻寬可達 100 GHz,這是傳統的二極體雷射所沒有的。 然而,成長三五族n-p-n結構電晶體材料界面品質很重要,會直接影響半導體材料的片電阻(sheet resistance)及理想因子(Ideality factor),如果沒有控制好會增加內部缺陷而增加載子的非復合放光(non-radiative recombination)。另外,布拉格反射鏡(Distributed Bragg reflector)的膜厚也必須精準地控制,會直接影響出光反射率及出光強度。目前國內有製造面射型雷射(VCSELs)技術成熟的廠商,但對於n-p-n結構的電晶體雷射的成長技術仍有發展的空間。因此藉由此計畫共同開發出結合電晶體結構和面射型雷射共振腔的「垂直共振腔電晶體雷射」,共同調整材料參數和元件特性,讓垂直共振腔電晶體雷射成為更快速、穩定、便宜的光源。 <br> Abstract: This project is mainly proposed to cooperate with companies to investigate InGaP/GaAs “Vertical-Cavity Transistor Laser” (VCTL) and high speed vertical-cavity surface emitting laser (VCSEL). Cooperation companies provide epitaxy growth of wafer and material calibration. Our group, IOED, accomplishes transistor laser process and measurement after the wafer is made. By improving electrical characteristic, optical bandwidth and power consumption, this project will lead VCTL from academia towards our national optical communication industry. VCSEL is the main light source of current 1-10 Gb/s short range communication system (SRC). In the future, after replacing conventional copper cable in application like USB or HDMI, VCSEL has mass market which is the blue ocean. To meet commercial needs, VCSEL layout has many advantages over conventional diode laser like cheaper in mass production, easier to integration, simpler in testing and higher coupling ratio. Therefore, in nowadays researches, every group is pushing VCSEL modulation bandwidth towards 40 Gb/s. VCTL is a brand new three-terminal semiconductor device. It has both advantage of transistor and laser which has high modulation speed and coherent light output. The dual output which is under voltage control at room temperature is suitable for next generation of high operation speed computer system due to low power consumption, low cost, high transport amount and high data density. Transistor laser with fast carrier recombination life time, about picosecond, theoretically can be made to obtain 100GHz modulation bandwidth. Epitaxy growth of III-V transistor laser is so important that interface quality directly affect sheet resistance, ideality factor and defects. Defects caused by poor growth condition enhance non-radiative recombination and degrade transistor laser performance. Distributed Bragg Reflector (DBR) thickness uniformity is also an important issue too. Thickness strongly affects reflectivity and light output intensity. So far as we know, there are only companies with matured VCSEL technique, but VCTL is still open for investigation. So, this project is proposed to find cooperation partners to improve VCTL by adjusting material parameters and device performance. After all, we want to make VCTL a faster, cheaper and stable light source.電晶體雷射垂直共振腔面射型雷射高速調變載子復合週期Transistor Laservertical cavityvertical-cavity surface emitting lasermodulation bandwidthrecombination lifetime高速雷射光源材料設計與開發