2023-01-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/696520隨著物聯網產業發展愈加成熟,許多產品如:RFID、無線感測器、藍牙信標等商品的需求也逐漸上升。然而,考量到產品的特性及使用頻率,傳統化學能電池的壽命及替換頻率已無法應付物聯網產業的需求。相反的,發展逐漸成熟的太陽能電池成為了極具潛力的選項,尤其是最近在學術界與業界都備受矚目的有機與有機-無機混成鈣鈦礦太陽能電池。受惠於其具簡易溶液加工之特性與低材料成本,有機與鈣鈦礦太陽能電池擁有能夠大規模生產的可能性,且由於其具高單位重量功率,與上述的小型電子產品在整合上更具優勢,在使用上也能具有較長的壽命,不需隨時替換電池來維持穩定供電。然而,目前學術上的研究主要還是以在室外太陽光環境下工作為導向,考慮到物聯網的工作環境大多在室內,室內光源的光譜與太陽光光譜的不匹配將造成元件的效率損失。因此,本計畫將致力於發展高效率室內弱光有機與鈣鈦礦太陽能電池。除開發適合於室內光源下工作的光活性材料之外,也將配合新型介面材料的開發,透過元件工程整合,針對元件的效率、再現性與穩定性進行最佳化,為其未來商業化及與物聯網產業進行整合做出貢獻。預計在此三年的研究畫中達成下列目標: for indoor applications. In addition to exploiting light-harvesting materials which are suitable for indoor applications, we will also develop compatible interfacial materials to optimize the associate interfaces in the devices. We eventually will integrate the material, interface, and device engineering to further optimize device’s performance, reproducibility, and operational stability, and anticipate contributing to the future commercialization and integration with the IoT ecosystem. We aim to achieve the following goals in this 3-year proposal: (1)Developing large band gap organic and perovskite light-harvesting materials. For the organic light-harvesting materials, new large band gap polymer donors and non-fullerene acceptors will be developed in order to match the spectra of indoor light; for perovskite materials, the composition will be engineering along with the dimension tailoring to develop large band gap perovskite materials with good stability. (2)Investigating the film quality and properties of large band gap organic and perovskite light-harvesting materials and their associate interface engineering. By using organic compounds to modify the associated interfaces in the device and investigate the charge-transfer states of the photoactive materials and the physics/chemical phenomenon at the relevant interfaces. (3)Integrating the developed photoactive and interfacial materials to develop high-performance solar cell devices for indoor applications. Meanwhile, device’s reproducibility and stability will be optimized to promote the future upscaling and commercial production of indoor solar cell devices.物聯網;室內弱光;寬帶隙光活性材料;介面材料;太陽能電池;Internet of Things;Indoor Application ;Large Band Gap Photoactive Materials;Interfacial Materials ;Solar Cells國立臺灣大學學術研究生涯發展計畫-桂冠型研究計畫【高效率室內弱光有機及鈣鈦礦光伏打電池之光活性材料能帶間隙工程與介面材料開發】