王立昇臺灣大學:應用力學研究所蘇信豪Su, Hsin-HaoHsin-HaoSu2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62474本論文的主旨為發展一戶外自動導航車系統,系統包含主控站、參考站和無人載具三個部份。無人載具整合了GPS接收機、電子羅盤、攝影機和六個超音波感測器等感測元件,使導航車能追尋路面上預先規劃好之標線軌跡,並在偵測到障礙物進入其運動方向的安全範圍內時,能夠即時進行避障,並藉由全球定位系統(GPS)進行全域定位,以作為當無人載具無法偵測到標線時的控制資訊,且建立由無線網路構成的各次系統資訊交換機制,使主控站得以監控載具行為。 在標線追蹤控制方面,利用樣板相關函數判斷影像中是否存在標線,再經由邊緣偵測、隨機霍氏轉換計算出標線參數,控制方面則採用模糊控制理論,根據標線資訊,經由知識庫推論載具所需要的速度輸出。在避障控制方面,利用VHDL語言配合FPGA開發板設計一控制六顆超音波感測器輸出入電路,再透過超音波感測器得到的距離資訊,利用模糊控制理論設計數個控制器整合六個超音波感測器,經由知識庫推論載具所需要的角度和速度輸出。在定位方面,分別使用載波相位三次差分法(KGPS)和電碼二次差分法(DGPS)進行定位。 本篇論文最後以具體實驗驗證所發展之系統確實可行。The main theme of this thesis is to develop an integrated navigation and control system for an unmanned vehicle. This system consists of three parts which are main- station, reference-station, and unmanned vehicle. There are various sensors on the vehicle such as GPS receiver, the electronic compass, the camera and six ultrasonic sensors. The vehicle uses camera to detect lanemarkers, ultrasonic sensors to detect the distance between the vehicle and the obstacle, electronic compass to measure the vehicle’s posture and GPS information to determine the vehicle’s position. The data exchange mechanism between sub-systems is set up through wireless network. The task of tracking is performed such that the vehicle can track along a lanemarker specified in advance and avoid collision with obstacle. The concept of template correlation is used to identify existing lanemarkers in vision. The techniques of Sobel Edge Detention and Randomized Hough Transform are then applied to obtain the parameters of the lanemarker. The operation of six ultrasonic sensors is designed by VHDL language and implemented by FPGA. The KGPS or DGPS is used to set the vehicle’s position. The several fuzzy controllers receive input data from the vision and the ultrasonic sensors, determine the steering angle and velocity of the vehicle. Experimental results show the effectiveness of our proposed navigation and control methodology.致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1內容簡介與文獻回顧 1 1.2論文架構 2 第二章 無人載具系統架構 3 2.1 載具硬體架構 3 2.2 載具軟體架構 6 2.3 GPS定位系統 7 2.3.1 載波相位三次差分定位法 7 2.3.2 電碼二次差分定位法 10 2.4 視覺系統 11 2.4.1 攝影機基本參數 12 2.4.2 標線偵測流程 13 2.4.3 辨識標線 13 2.4.4 邊緣偵測 14 2.4.5適應性動態調整門檻值作影像二值化 15 2.4.6 霍氏轉換之應用 15 2.4.6.1 霍氏轉換 15 2.4.6.2 隨機霍氏轉換 16 2.4.7 反透視法 18 2.5 超音波測距系統 19 2.5.1 超音波的基本性質 20 2.5.2 超音波的感測器的檢測原理 20 2.5.3 超音波的感測器的距離量測 21 2.5.4 超音波感測器的基本參數 21 2.5.5 超音波感測器的輸入和輸出控制 22 2.6導航系統整合 23 2.7 處理時間分析 24 第三章 控制器設計 26 3.1無人載具運動方程 26 3.2模糊控制理論簡介 27 3.3標線追蹤控制器設計 29 3.4避障控制器設計 30 3.4.1 避障系統規劃 30 3.4.2 超音波感測器的模糊整合 31 3.4.2.1 前方測距值模糊權重判定器 32 3.4.2.2 側邊測距值模糊權重判定器 33 3.4.3前方避障模糊控制器 34 3.4.4側面避障模糊控制器 35 3.4.5載具繞牆行進模糊控制器 36 3.5標線搜尋控制 38 3.6無人載具自動導航控制系統架構 39 第四章 實驗結果與討論 41 4.1 KGPS和DGPS定位結果比較 42 4.2 載具繞行實驗 43 4.3 載具即時避障標線追蹤實驗 — 小型障礙物 45 4.4 載具即時避障標線追蹤實驗 — 大型障礙物 53 4.5 結果與討論 57 第五章 結論與未來工作 59 參考文獻 612744342 bytesapplication/pdfen-US戶外自動導航車避障模糊控制理論載波相位三次差分法電碼二次差分法unmanned vehicleavoid collision with obstacleKGPSDGPSfuzzy無人載具避障之導航與控制Navigation and Control for Obstacle Avoidance of an Unmanned Vehiclethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62474/1/ntu-96-R94543009-1.pdf