工學院: 機械工程學研究所指導教授: 顏家鈺尤冠勛Yu, Kuan-HsunKuan-HsunYu2017-03-132018-06-282017-03-132018-06-282016http://ntur.lib.ntu.edu.tw//handle/246246/278494能源問題促使了電動車的相關發展,而電池作為電動車的主要能源儲存裝置,其控制與監測成為電動車發展中不可或缺的一部分。 在電動車的模擬階段,需要電池模型用以預電池響應,確保各控制策略的可行性,而在實車測試階段,電池模型可用於電池管理系統預測電池響應,達到監控目的。本論文利用時域上的電壓分析,提取電池模型參數,並考量放電電流大小與電量對於參數之影響,之後運用MATLAB®建立電池模型,提供電池芯的完整資訊,其模擬效果在動態負載下,誤差峰值不超過四個百分點。電量的即時估測,目的在避免電池的不當使用,延長電池壽命並且避免危險,本論文建立以卡爾曼濾波器為主體之電量估測方法,避免了傳統庫倫積分法的積分誤差累加問題,並與其他演算法做一比較,成果指出適應性卡爾曼濾波器擁有最佳效果,其可以在60秒之內將電量誤差收斂至一個百分點以下,克服初值錯誤問題。Battery models are vital for the development of electric vehicles. It helps stimulate and predict the voltage response of the battery, which can ensure the efficiency of other control algorithms and maintain the safe usage of the battery. In the first part of this thesis, MATLAB® is used to build a battery model of battery cell. The battery model considers the influences of magnitude of discharge current and state of charge on the parameters of the battery model. It can predict the voltage response within 4 % of voltage error under dynamic load. In the second part of this thesis, a model-based Kalman filter is adopted for state of charge estimation. This algorithm is confirmed to have good estimation efficiency. It can converge and overcome the problem of wrong initial point of state of charge within 60 seconds.2187490 bytesapplication/pdf論文公開時間: 2026/12/31論文使用權限: 同意有償授權(權利金給回饋學校)鋰離子電池電池模型電池模型參數電量估測卡爾曼濾波器Lithium-ion BatteryBattery ModelParameter EstimationSOCKalman Filter[SDGs]SDG7電池芯電池模型建立與電量即時估測演算法Battery Cell Modeling and Online Estimation of State of Charge of Lithium-ion Batterythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/278494/1/ntu-105-R02522834-1.pdf