國立臺灣大學應用力學研究所吳光鐘2006-07-262018-06-292006-07-262018-06-292000-07-31http://ntur.lib.ntu.edu.tw//handle/246246/21573本計畫將史磋法延伸於二維異向動彈 力問題。傳統動彈力分析方法是以積分轉 換為基礎,本計畫發展之方法則無此需要, 應用上甚為方便。利用新法,本計劃求得 無限域反平面應變問題之動態格林函數。 此格林函數反比於時間及一有效動態剪力 模數。其所對應在通過源點之平面上之曳 引力為零。以無限域格林函數為基礎,本 計畫並求得楔形體,半無線域及無限板之 格林函數。The project extends the Stroh formalism to two-dimensional anisotropic elastodynamic problems. Conventional methods of analysis are based on integral transforms. The method developed in this project does not require such procedure. The dynamic Green’s function due to an impulse in an infinite anisotropic medium under antiplane deformation is derived using the extended Stroh formalism method. The Green’s function is inversely proportional to the time t and an effective dynamic shear modulus. It is shown that the tractions on the planes passing through the source point vanish identically. Based on the free-space Green’s function, the Green’s functions for wedges, semi-infinite media and strips are obtained.application/pdf42394 bytesapplication/pdfzh-TW國立臺灣大學應用力學研究所異向彈性彈性波傳格林函數Anisotropic ElasticityElastic Wave PropagationGreen Function史磋法於二維異向動態彈力問題之延伸Extension of Stroh Formalism to Two-Dimensional Anisotropic Elastodynamic Problemsreporthttp://ntur.lib.ntu.edu.tw/bitstream/246246/21573/1/892212E002007.pdf