2020-08-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/705054摘要:鈣鈦礦電池是近年來備受矚目的新興太陽能電池技術,電池效率已經超過25%,更有繼續上升的趨勢。為了能將此技術商業化,即,生產大面積的鈣鈦礦電池,必須用到單片模組集成技術。這種技術廣泛使用於玻璃基板的薄膜太陽能電池上,其目的是為了減小太陽能電池模組的串聯電阻。大面積的鈣鈦礦電池將被畫割為小面積的鈣鈦礦電池,然後串聯起來。 此過程中有三個雕刻步驟,通常被命名為P1,P2和P3。P1是用來畫割前電極,P2用於劃開吸收層,而P3是用於劃開背電極。其中P2是最為關鍵和困難的步驟,原因是在吸收層和背電極之間有一層幾十奈米厚的氧化鎳(幫助電洞傳輸),P2劃線技術需將氧化鎳去除乾淨,但不能破壞背電極(FTO)。如果不能去除氧化鎳層,或者破壞了背電極,都會導致串聯電阻大幅增加,從而導致效率下降。我們的研究就是用雷射精準加工技術來解決這個問題。<br> Abstract: Perovskite (PVSK) solar cell is an emerging technology that attracts many research efforts as it showed potential of high photoelectric conversion efficiency (PCE). The recently reported world record efficiency is higher than 25%. To commercialize the PVSK technology, i.e. manufacture large area PVSK solar modules, one of the challenges is to make monolithic integration of PVSK solar cells. Monolithic integration of solar cells is commonly used for thin film solar cell technology to reduce the series resistance loss. The large area PVSK solar cell is to be divided into small area solar cells and then connected in series. There are three patterning steps usually named P1 P2 and P3 where P1 is to scribe the bottom electrode and P2 is to scribe the absorber layer and P3 is to scribe the top electrode. This project is to investigate the laser P2 process which impacts the contact resistance between the electrodes, thus the series resistance. In PVSK solar cell there is a NiO layer between the absorber and the front electrode (FTO), and laser P2 process needs to carefully remove NiO layer without damaging the FTO layer. Failure to remove NiO or damaging FTO will both lead to high contact resistance and low efficiency. Our study will help solve the problem with laser ablation techniques.太陽能電池鈣鈦礦電池大面積鈣鈦礦電池單片模組集成技術雷射劃線Solar CellPerovskite solar celllarge area perovskite solar cellmonolithic integrationlaser scribing考量區域特性之太陽能源永續發展研究-大型鈣碳礦太陽能電池之雷射雕刻技術