陳俊顯Chen, Chun-hsien臺灣大學:化學研究所柯志宏Ko, Chih-HungChih-HungKo2010-06-302018-07-102010-06-302018-07-102009U0001-0907200921403400http://ntur.lib.ntu.edu.tw//handle/246246/187521在分子電子學中,提昇電子在金屬-分子-金屬接合點(Metal-Molecule-Metal, MMM)的傳遞效率是項重要議題。影響單分子電性之量測值的關鍵因素包括分子主體、末端官能基與電極材料,然而迄今仍無針對電極材料進行討論的實驗結果。有鑑於此,我們以金、鈀、鉑三種金屬做為電極,發現所測得的單分子導電值有數倍之差異,本論文將報導量測結果並探究其原因。我們使用的實驗儀器是掃描式穿隧顯微鏡(scanning tunneling microscope, STM),以破裂接點法(break junction)測量直鏈飽和烷系列的雙硫醇和雙異硫氰分子之導電值,藉此得到官能基與電極間的接觸電阻(contact resistance),用於比較各種分子-電極組合的差異。實驗結果顯示每種分子在三種金屬上皆呈現高、低兩組導電值(high-conductance, HC和low-conductance, LC),相差約11倍。在接觸電阻方面,以鈀與鉑架接的雙異硫氰分子下降至金的20-60%,而對於雙硫醇分子,使用鉑電極減少成為金的50%。我們也檢視了三核鎳錯合物[Ni3(dpa)4(NCS)2] (dpa = 2,2''-dipyridylamide),其導電值變化趨勢和雙異硫氰分子類似,證實鈀、鉑電極可提供較佳導電性之特性也適用於飽和烷以外的分子。分析連續取樣出現有效MMM訊號的機率,雙異硫氰分子在鈀和鉑上鍵結機率分別為37%與42%,較優於在金的27%;而比較金與鉑電極量測雙硫醇分子的機率分別為35%與29%。密度泛函理論(density functional theory, DFT)的模擬計算顯示實驗中的兩組導電值可能源自於頭基鍵結於基材表面原子的three-fold hollow或ontop位置,且分子在兩位向的吸附能差異與機率之相對大小吻合。此外,受軌域偶合影響,分子與表面鍵結的幾何角度將決定電子穿越此介面的難易。例如頭基的硫原子與金屬原子間以d軌域重疊為主,頭基與電極的夾角會因pi電子雲的參與而呈180度,直線通道將有助於提昇電子傳遞效能;反之,兩者間如以s軌域為主,角度為100度,導電值因而下降。所以我們能藉由更換電極材料來製造出通道含較多d軌域性質的接合面。One of the critical issues for molecular electronics is the development of optimal molecule-electrode contacts which have long been expected to substantially influence the measured single-molecule conductance. However, other than gold, systematic studies of a homologous series of molecules to extract the headgroup-metal barrier have not been reported. This thesis work scrutinizes the effect of electrode materials on single-molecule conductance by examining alkanedithiols anchored onto Au and Pt electrodes as well as alkanediisothiocyanates on Au, Pd, and Pt. STM-BJ (scanning tunneling microscopy break junction) was employed to create thousands of molecular junctions and to obtain single-molecule conductance. The results show that all molecule-electrode combination exhibits high- and low-conductance datasets (HC and LC). Compared to the contact resistance measured using Au electrodes, alkanediisothiocyanates are about 20% ~ 60% less resistive on Pd and Pt and alkanedithiols are about 50% less resistive on Pt. The difference is ascribed to their Fermi energies and the pi characters of the atoms at the contact. The dependence of single-molecule conductance on the electrode materials is also true for a linear trimetal complex, [Ni3(dpa)4(NCS)2] (dpa = 2,2''-dipyridylamide), suggesting the generality of the findings for both saturated and highly conductive molecular wires. For alkanediisothiocyanates, the probability of acquiring staircase-like traces among all i-s traces increases from 27% on Au to 37-42% on Pd or Pt electrodes. Using density functional theory (DFT), adsorption energies on three-fold hollow site and ontop site are in agreement with probabilities of HC and LC. Calculations of transmission function and comformation of headgroup-metal interface are also carried out to facilitate the rationalization using HOMO-LUMO gap and electronic coupling at the contact.中文摘要 I文摘要 II目錄 III目錄 VI目錄 IX一章 緒論 1-1 前言與背景介紹 1-2 量測分子導電性的技術 2-2-1 兩電極間為分子膜的導電性量測 2-2-1-1 塊材電極 3-2-1-2 奈米電極 4-2-2 兩電極間為單分子的電性量測 6-2-2-1 機械式控制破裂接點法 7-2-2-2 導電型原子力顯微鏡 9-2-2-3 掃描式穿隧能譜 11-2-2-4 掃描穿隧顯微鏡破裂接點法 13-3 改變分子導電值的因素 17-3-1 分子內部構造的影響 17-3-1-1 分子類別的衰減常數 17-3-1-2 分子構造的電阻 22-3-2 分子-電極接觸面 26-3-2-1 頭基類型與其在電極上的鍵結位向 26-3-2-2 電極材料的匹配 30-4 電極間的金屬原子線 34-4-1 金原子線的量子化行為 35-4-2 鈀與鉑的接點 36-5 本論文的研究目的 40二章 實驗部份 41-1 藥品、耗材及儀器 41-1-1 藥品與耗材 41-1-2 實驗儀器 42-2 實驗步驟 43-2-1 製作電極 43-2-1-1 濺鍍金屬薄膜 43-2-1-2 製作金屬探針 44-2-2 組裝樣品槽 45-2-3 測量金屬與分子的電性 46-2-3-1 金屬原子線的導電值 46-2-3-2 單分子導電性 47-2-3-3 單分子電流伏特曲線 47-2-4 數據處理 48-3 理論計算軟體 48三章 結果討論 49-1 研究動機 49-2 金、鈀和鉑的金屬原子串導電性 49-3 以金、鈀和鉑電極測量飽和烷雙異硫氰與雙硫醇 51-3-1 空白實驗 51-3-2 單分子導電值 52-3-3 接觸電阻與衰減常數 57-3-4 鍵結位向的機率 60-3-5 單分子電流伏特曲線 62-4 密度泛函理論的計算 65-4-1 鍵結位向的吸附能 65-4-2 飽和烷雙異硫氰與雙硫醇之穿透函數 66-4-3 金、鈀和鉑與異硫氰及硫醇團基之電子偶合 71-5 以金、鈀和鉑電極測量金屬串錯合物 74四章 結論 78五章 參考文獻 793985929 bytesapplication/pdfen-US掃瞄式穿隧顯微鏡單分子電性破裂接點法分子電子學金屬奈米線molecular electronicsSTM, break junctionquantum point contactsingle molecular conductance電極材料對單分子電性的影響:金、鈀及鉑電極與飽和烷硫醇和異硫氰基團之軌域偶合Superior Contact for Single-Molecule Conductance: Electronic Coupling of Thiolate and Isothiocyanate on Pt, Pd, and Authesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187521/1/ntu-98-R96223145-1.pdf