江茂雄Chiang, Mao-Hsiung臺灣大學:工程科學及海洋工程學研究所吳秉穎Wu, Ping-YingPing-YingWu2010-07-142018-06-282010-07-142018-06-282008U0001-0507200801490200http://ntur.lib.ntu.edu.tw//handle/246246/188930本論文旨在發展雙向大行程高負載高精度之定位控制系統,結合變轉速泵控液壓系統與雙壓電致動器系統構成基本的液壓-雙壓電混合架構,由於液壓伺服系統具有高響應與高出力的特性,而壓電致動器具高響應、中出力及精密定位能力,故結合液壓伺服系統與雙壓電致動器所發展出的混合定位系統,是針對中大負載系統達到高精度定位之目標。定位控制係以伺服液壓缸進行大行程高響應的粗定位,再以雙壓電伺服系統進行小行程的精密定位補償,因此形成了二進一出之控制系統架構。但由於堆疊式壓電致動器無法承受大拉力及扭力,本論文提出創新之雙向運動精密定位控制系統,雙向運動時,本系統雙壓電致動器都只有承受壓的力量,不會因過大之拉力而造成斷裂,故可用於高負載之需。 本文採用具自調式模糊滑動補償之適應性模糊控制器,來克服液壓系統不確定性時變等非線性的問題。本文首先利用數值分析軟體進行開迴路系統的建立和閉迴路系統的模擬,驗證控制器的可行性,最終加以實驗實現,實驗證實此控制系統在雙向不同行程時皆可定位到位置感測器最佳解析度20nm,滑塊負載也達130kg,而最大行程也可達到300mm,充分展現出本文所發展創新液壓-雙壓電混合定位系統具雙向大行程、高負載、高精度的特性。The purpose of this thesis is to develop a hydraulic-dual piezoelectric hybrid positioning control system with bi-directional large stoke, high load, high response and high precision, in which the variable rotational speed hydraulic pump driving hydraulic cylinders combines dual piezoelectric actuators positioning system. Due to the structure limit of the stack type piezoelectric actuator, the piezoelectric actuator allows big compression force, but small tension force and torque. The dual piezoelectric positioning system developed in this paper makes the two piezoelectric actuators having only compression force for applying in bi-directional high loading condition. The hydraulic servo system serves to position in coarse range and the dual-piezoelectric positioning system works in fine range to reach nanometer range positioning accuracy. The control system contains dual-input and single output. For that, adaptive fuzzy controller with self-tuning fuzzy slide-mode compensation (AFT-STFSMC) is used to design the hydraulic position controller and the dual-piezoelectric positioning controller. To solve the coupling interaction between the two subsystems, a decoupling controller is added. The simulation and experiment results show that the proposed hydraulic-dual piezoelectric system can achieve 20 nm accuracy with the stroke of 300 mm and the max. loading of 130 kgf.口試委員審定書 II謝 III要 IVBSTRACT V錄 VI目錄 X目錄 XV一章 緒論 1.1 前言 1.2 文獻回顧 3.2.1 泵控液壓系統文獻回顧 3.2.2 壓電致動器之文獻回顧 4.2.3 液壓-壓電系統之文獻回顧 4.2.4 控制理論回顧 5.3 研究動機及本文架構 6.3.1 研究動機 6文架構 6二章 系統架構與設備 9.1 雙向大行程高精度液壓-雙壓電混合系統設計及建立 9.2 系統架構 13.3 液壓系統 15.3.1 變轉速泵控液壓系統 15.3.2 抗衡閥 17.4 壓電致動器 18.4.1 壓電致動器的簡介 18.4.2 壓電致動器優缺點 19.4.3 壓電致動器的磁滯現象 19.4.4 壓電致動器的潛變現象 20.5 感測器 21.5.1 光學尺 21.5.2 壓力傳感器和力量感測器 21.6 PC-based控制器和控制介面 22三章 系統數學動態模型建立 23.1 變轉速泵控液壓伺服系統 23.1.1 變轉速泵控液壓伺服系統數學模型 23.1.2 變轉速泵控液壓系統開路模擬 26.2 壓電致動器 29.2.1 壓電致動器之數學模型 29.2.2 壓電致動器的系統參數鑑別 29四章 控制理論和控制器設計 31.1 模糊控制理論與滑動控制理論 31.1.1 模糊控制理論 31.1.2 滑動控制理論 32.2 模糊滑動模式理論 33.2.1 模糊滑動模式理論 33.2.2 模糊規則庫之建立 34.3 具自調式模糊滑動補償之適應性模糊控制理論 37.4 具自調式模糊滑動補償之適應性模糊控制之穩定分析 40.5 控制器設計 42.5.1 液壓伺服控制器之設計 42.5.2 壓電伺服控制器之設計 44.5.3 解耦合控制 45五章 模擬及實驗結果與討論 47.1 變轉速泵控液壓伺服系統及壓電致動器定位控制模擬 48.1.1 變轉速泵控液壓系統定位控制模擬 49.1.2 壓電致動器定位控制模擬 51.2 液壓伺服系統雙向定位實驗 52.2.1 液壓系統雙向定位伺服控制實驗 53.2.2 液壓系統雙向軌跡定位伺服控制實驗 56.2.3 液壓伺服系統之具自調式模糊滑動補償之適應性模糊控制器控制力分析 65.3 壓電伺服系統控制實驗 67.3.1 單壓電伺服系統定位實驗 68.3.2 雙壓電伺服系統定位實驗 72.3.3 單壓電系統和雙壓電系統比較 77.4 液壓-壓電混合系統定位伺服控制實驗 78.4.1 液壓-單壓電伺服系統定位控制實驗 79.4.2 液壓-雙壓電伺服系統正向定位控制實驗 81.4.3 液壓-雙壓電伺服系統反向定位控制實驗 85.4.4 液壓-雙壓電伺服系統之強健性測試 89.4.5 液壓-雙壓電伺服系統之負載增加實驗 94六章 結論與建議 97考文獻 993910720 bytesapplication/pdfen-US液壓-壓電混合系統變轉速泵控液壓系統壓電致動器適應性滑動控制奈米精度定位控制hydraulic-piezoelectric hybrid systemvariable rotational speed pump systempiezoelectric actuatoradaptive sliding mode controlnanometer precision positioning control雙向長行程高負載奈米精度液壓-雙壓電混合系統設計與控制之研究Development of a Hydraulic-Dual Piezoelectric Hybrid Servo Positioning System for Large Stroke High Loading and Nanometer Precision.thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/188930/1/ntu-97-R95525043-1.pdf