李嗣涔臺灣大學:電子工程學研究所陳彥諭Chen, Yen-YuYen-YuChen2007-11-272018-07-102007-11-272018-07-102005http://ntur.lib.ntu.edu.tw//handle/246246/57671在本論文中,探討兩種元件的特性包括有a-Si:H 太陽能電池在上的薄膜電晶體和有有機發光二極體在上的薄膜電晶體,也會討論能量回收型有機發光二極體的詳細製備過程。太陽能電池被導入在薄膜電晶體和有機發光二極體之間以解決對比降低的問題。經由這種新的設計,太陽光和有機二極體所發出來的光都可以被太陽能電池所吸收,同時這兩種被回收的光也可以被視為一種新的能源來達成能量回收型的有機發光二極體。比較有無薄膜電晶體在下的a-Si:H太陽能電池,其特性在光照射之下分別有百分之2.25和百分之2.79的功率轉換效率。有機發光二極體置於薄膜電晶體上後,經由比較源汲電流對源汲電壓的曲線,可知薄膜電晶體的電性將變好。我們製備不同的a-Si1-xGe x:H膜層以找出適合的Ge分率,經由光學能隙和FTIR頻譜的分析,決定出最適合的x值為0.25。The performance of two devices, including a TFT with a a-Si:H solar cell on top and a TFT with a OLED on top, were studied in the thesis and a detailed fabrication processes of the energy-recoverable OLED were shown. Solar cell was introduced between thin film transistor (TFT) and organic light emitting diode (OLED) to solve the contrast problem. Through the new design, both the sun light and the emitted light can be absorbed by the solar cell and consequently the two kinds of recycled lights will be treated as a new energy to achieve the energy-recoverable OLED. The performance of a a-Si:H solar cell with and without TFT below it are compared: the power conversion efficiency of 2.25 % vs. 2.79 % under white light illumination. The electrical characteristic of TFT becomes better after depositing OLED on top. The a-Si1-xGe x:H films fabricated with different Ge fraction. After analyzing the optical gap and the FTIR specta, the optimum x, 0.25, is determined.Contents Chapter 1 Introduction..............................................1 Chapter 2 Experiments...............................................5 2.1 Deposition System --Plasma Enhanced Chemical Vapor Deposition(PECVD.........................................5 2.2 Substrate Preparation.................................8 2.3 Deposition Procedures................................10 2.4 Measurement Techniques...............................11 2.4.1 Film Thickness.....................................11 2.4.2 Current–Voltage Characteristics...................11 2.4.3 Transmittance and Reflectance......................12 2.4.4 Spectral Response..................................12 2.4.5 Introduction of FTIR...............................12 Chapter 3 Energy-Recoverable OLED by Excimer 3.1 The Fabrication of Poly-Si TFT by ELA with Absorption Layer....................................................18 3.2 a-Si:H p-i-n Solar Cell..............................18 3.3 The Performance of the a-Si:H p-i-n Solar Cell Deposited on the Poly-Si TFT.............................23 3.4 The Performance of the Poly-Si TFT with OLED on Top..33 3.5 The Energy-Recoverable OLED..........................36 Chapter 4 The Structural and Optical Properties of Amorphous Silicon Germanium Alloys.......................41 4.1 Deposition Conditions................................41 4.2 Growth Rate..........................................42 4.3 Optical Gap..........................................45 4.4 Fourier Transform Infrared Spectra...................46 4.4.1 Fundamentals of Infrared Spectroscopy..............46 4.4.2 Infrared Spectra of Hydrogenated Amorphous Silicon Germanium Alloys.........................................50 4.5 Electron Spectroscopy for Chemical Analysis..........52 4.6 The Optimum Value of The Germanium Fraction in Energy-Recoverable OLED.........................................54 Chapter 5 Conclusions..............................................59 Reference ................................................61724833 bytesapplication/pdfen-US薄膜電晶體有機發光二極體太陽能電池TFTOLEDSolar Cell用於能量回收型有機發光二極體之多晶矽薄膜電晶體及非晶矽p-i-n 太陽能電池The poly-Si Thin Film Transistor and a-Si:H p-i-n Solar Cell for Energy-Recoverable Organic Light Emitting Diodethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57671/1/ntu-94-R92943044-1.pdf